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1. Introduction 

When internal waves generated by flow over mountains break under suffi­
ciently stably stratified atmospheric conditions, a localized turbulent zone 
is created. This is one important example of the mechanisms which en­
gender so-called 'clear air turbulence'. The presence of a turbulent zone is 
a concern for air traffic and the associated increase in wind trapped be­
tween this turbulent zone and the mountain creates strong storms on the 
lee-side of the mountain. Furthermore, this phenomenon increases the drag 
on the atmosphere which needs to be accounted for in numerical weather 
prediction models. 

Considerable numerical and theoretical research on mountain-wave break­
ing has focused on the increase in wave surface-drag and the generation of 
severe windstorms [e.g., Klemp & Lilly (1975), Peltier & Clark (1979,1983), 
Clark & Peltier (1977), Clark & Farley (1984) and later Smith (1985,1991)]. 
The laboratory experiments by Rottman & Smith (1989) also studied the 
generation of severe windstorms, and were extended by Castro & Snyder 
(1993) to include the effect of the hill shape on the range of Froude num­
bers leading to wave-breaking. The dynamics of the mountain-wave break­
ing process itself, on the other hand, was investigated by Laprise & Peltier 
(1989a, 1989b) via two-dimensional linear stability analysis and numerical 
simulation, and more recently by Afanasyev & Peltier (1998) via a three­
dimensional simulation. 

A central focus of the recent studies on the dynamics of internal-wave 
breaking, which include wave breaking in critical layers [e.g., Winters & 
Riley (1992) and Andreassen et at. (1998)], is the determination of the 
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type of instability mechanism which generates wave breaking. The three­
dimensional numerical simulation results by Afanasyev & Peltier (1998) on 
mountain-wave breaking have shown that stream wise vortices are created 
in the wave breaking region by a shear-aligned convective instability, as 
previously observed in the cores of Kelvin-Helmholtz billows. All studies 
found that three-dimensional effects playa central role in the development 
of the convective instabilities and thus have to be considered. The present 
work aims to detail the evolution leading to mountain-wave breaking and 
the resulting vortical structures, as observed in the laboratory. Emphasis 
will be given on the three-dimensional structures generated by quasi two­
dimensional mountains. 

2. Experimental Method 

Quasi two-dimensional Gaussian-shaped obstacles or 'mountains', of cross­
sectional shape h(x) = H exp( _x2 /2L 2 ) where H is the height of the moun­
tains and L the characteristic streamwise length, were towed at uniform 
velocity U in linearly stratified saline solutions of Brunt-Vaisala frequency 
N of approximately one rad/sec (see figure 1). The quasi two-dimensional 
mountains are uniform along the spanwise direction for a length W. The 
ends of the mountains are smoothed by the same Gaussian shape as in the 
streamwise direction and in a semi-circular manner. While more represen­
tative of actual mountain ranges, towing quasi two-dimensional mountains 
rather than two-dimensional mountains also reduces the upstream pertur­
bations due to blocking at low Proude numbers. 

In order to examine three different Reynolds number ranges, Re = 
U H/v r-.J {102 , 103 , 104}, the experiments were carried out with three dif­
ferent size models in three corresponding tanks of size (Ht x W t x Lt ) equal 
to 0.5 x 0.5 x 4m3 , 0.7 x 0.8 x 7m3 and 1.5 x 3.0 x 22m3 . The models were 
scaled such that the vertical and spanwise confinement effects in each tank 
were the same, specifically, H/L = 0.57, WjH = 10.3 and WjWt = 0.45. 
The mountains were towed in an upright configuration at the bottom of 
the tanks, suspended by thin metal threads in order to avoid perturbations 
generated by the baseplate of an upside-down configuration [e.g., Castro & 
Snyder (1993)]. 

The flow is essentially governed by three parameters, the vertical Proude 
number, Fv = U / N H, a measure of the non-linear effects, the horizontal 
Proude number, Fh = UjNL, a measure of the non-hydrostatic effects, 
and the Reynolds number. The present experiments were all performed 
in the non-linear regime where wave breaking occurs, at Fv = 0.6 with 
Fh = FvH/ L = 0.34. 

The flow was examined with particle tracking as well as fluorescent-dye 
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Figure 1. Experimental setup 

z 

L..-_--'-_p 

Linear 
stratification 

111 

imaging methods. Laser-light sheets were used to illuminate the particles 
and/or the fluorescent dye in given cross-sectional planes of the flow. The 
particles used were neutrally buoyant and spanned the density range of 
interest. The flow was recorded on S-VHS tape for subsequent digital pro­
cessing and analysis. 

3. Temporal evolution 

Figure 2 shows the streakline pattern obtained in the vertical center plane 
of the flow for several non-dimensional times (Nt) as the wave develops. 
The wave is observed to steepen [figure 2(a)] and eventually reaches the 
critical condition for static instability near Nt = 28 [figure 2(b)]. However, 
rather than becoming immediately unstable, the flow continues to remain 
dynamically stable for several buoyancy periods, folding into an 'S'-shape 
[figure 2(c)]. Such dynamic stability has also been observed in other wave­
breaking situations such as oscillating tubes [Thorpe (1994)]. The upper 
half of the'S' wave pinches faster than the lower one, resulting, a few 
buoyancy periods later, at Nt = 48, in a clockwise rotating vortex [fig­
ure 2(d)]. This configuration continues to evolve more rapidly than before 
into a counter-rotating vortex pair by Nt = 54 [figure 2 (e)]. In accordance 
with the generation of lee-side windstorms under wave-breaking conditions 
[e.g., Peltier and Clark (1979)], the maximum velocity in the lower level 
jet-like flow has accelerated from about 2.0U when the wave is critical to 
about 2.2U when the counter-rotating vortex pair has formed. 

The subsequent flow evolution remains unsteady and is accompanied by 
complete changes in topology. Whereas the flow at Nt = 54 was character­
ized by four critical points (two counter-rotating foci and two saddle points), 
a topology with no critical points occasionally appears at later times [e.g., 
figure 2(f)]. This apparent 'relaminarization' has bifurcation lines and is 
therefore three-dimensional. In contrast, the earlier steepening wave reveals 
no bifurcation lines, implying that the flow can be two-dimensional. 
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Figure 2. Streaklines in the y = 0 vertical plane at Re = 130. (a) Nt = 26, (b) Nt = 28, 
(c) Nt = 44, (d) Nt = 48, (e) Nt = 54, (f) Nt = 150. The flow is from left to right. 

Similar experiments were carried out for the three Reynolds number 
ranges. The same evolution was observed, although it is increasingly rapid 
as the Reynolds number increases. 

It can be noted that there are some differences between the tank ex­
periments and the series of inviscid numerical simulations such as those 
of Peltier and Clark (1979) or Afanasyev and Peltier (1998), in which a 
downward and downstream penetration of the turbulent breaking zone 
was observed. While our own series of numerical simulations (Gheusi et 
al. 1999), in similitude with the experiments, revealed a similar downward 
and downstream penetration when surface friction was not taken into ac­
count, simulations with surface friction revealed close agreement with the 
experiments. Allowing for surface friction thus appears to generate the flow 
separation on the lee side of the mountain surface with a strong trapped 
lee-wave (figure 2), which, in turn, prevents the downstream propagation 
of the wave-breaking region and effectively confines the breaking zone. 
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4. Transverse vortex 

The above results suggest that at some point in the evolution of the flow, 
the structural features of the flow become three-dimensional. Recent nu­
merical simulations [e.g., Winters & Riley (1992)] have shown that three­
dimensionality is an essential characteristic for convective instability. There­
fore, in order to examine the three-dimensional aspects, the flow was viewed 
simultaneously in two orthogonal planes, the vertical x - z plane and the 
horizontal x - y plane. The horizontal laser sheet was positioned at the 
center of the wave breaking region (z/ H = 2.5) and the vertical sheet at 
y = o. 

Simultaneously sampled particle tracking results are presented in fig­
ure 3 for Re = 580 at Nt = 32. The vertical plane in figure 3(a) clearly 
shows a clockwise vortex which was also observed in figure 2(d) at lower 
Re. Although the streaklines in the horizontal plane [figure 3(b)] reveal bi­
furcation lines, the flow is still quasi two-dimensional over the center of the 
mountain, spanning about 50% of the homogeneous section. It can there­
fore be deduced that the clockwise vortex identified in the vertical plane 
represents a cross-sectional view of a structure with significant transverse 
extent. The bifurcation lines are due to slight deviations from perfect span­
wise alignment. The existence of a clockwise vortex with transverse extent 
is further supported by observations of similar clockwise vortices in the 01£­
center vertical plane at y/ H = 3 and by the fact that such vortices were 
consistently observed when the experiments were repeated. 
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Figure 3. Simultaneous particle tracking results at Re = 580 and Nt = 32. (a) Vertical 
x - z plane at y = 0; (b) horizontal x - y plane at z/ H = 2.5 

The formation of a transverse vortex is characteristic of a shear in­
stability. This is consistent with measurements of the gradient Richardson 
number, Ri = N 2(du/dz)-2, which is less than 0.25 in a narrow band above 



114 O. EIFF1, P. BONNETON2 

the statically unstable region, although this criterion is strictly only valid 
for parallel and inviscid flow. 

5. Toroidal vortices 

The subsequent development is highly three-dimensional across the entire 
mountain ridge. The two different topologies that appear in the vertical 
plane [figures 2, (e, f)] can be explained if the underlying structures in the 
wave breaking region were to consist of toroidal vortices inclined into the 
flow as depicted in figure 4. A vertical cross-section through the center of 
one toroidal vortex would result in the counter-rotating vortex pair observed 
in figure 2( e). The flow between two adjacent structures, in the absence 
of smaller scale structures, would appear as the 'relaminarized' flow with 
bifurcation lines as seen in figure 2(f). Lateral advection of such structures 
would cause these two topologies to be observed in a fixed plane at different 
times. 

Figure 4. Vortex skeleton model of the large-scale structures in the wave-breaking region. 
The co-rotating structures are inclined with respect to the horizontal. 

Two simultaneously acquired cross-sectional planes at two such different 
times are shown in figures 5(a)-(d). Figure 5(a), at Nt = 64, reveals a 
flow without critical points in the y = 0 plane, while in the vertical plane 
[figure 5(b)] several adjacent counter-rotating vortex pairs can be identified. 
Clearly, the flow is not two-dimensional anymore and the counter-rotating 
vortex pairs seen in figure 5(b) are to be expected from inclined toroidal 
vortices intersected in the horizontal plane. Taking into account the senses 
of rotation of the vortices, one can identify two such counter-rotating vortex 
pairs which are centered about y = O. Given that two vortex pairs are 
centered about y = 0, no critical points are expected in the y = 0 vertical 
plane, which is verified by the results shown in figure 5( a). 

At a later time (Nt = 128), one vortex pair remains in the horizontal 
plane shown in figure 5( d). Since the vortex is centered at y = 0, we expect a 
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counter-rotating vortex to appear in the y = 0 vertical plane - as can be seen 
in figure 5(c). Thus, these measurements confirm the topological features 
expected from the presence of toroidal vortices in the flow. These vortices 
are strongly inclined with respect to the horizontal direction, yielding both 
longitudinal and vertical vorticity in addition to transverse vorticity. 

3 

~ 
N 2 

2 

2 

J 
~/H 

J 
rlH 

u 

" u 

5 

.., 
" u 

5 

J vertical cut 

5.0 

~ 
" 

2.5 

2.5 0.0 - 2.5 
!III{ I vertical cut 

5.0 

~ 
Ii 

2.5 

2.~ 0.0 - 2.S 
11111 

Figure 5. Simultaneous particle tracking results at Re = 580 at two different times. (a) 
x - z plane at y = 0, Nt = 64; (b) x - y plane at y/H = 2.5, Nt = 64; (c) x - z plane 
at y = 0, Nt = 128; (d) x - y plane at y/H = 2.5, Nt = 128. 

6. Discussion and conclusion 

Toroidal vortices with significant components of vorticity in all directions 
have been shown to exist within the localized zone of breaking waves over 
quasi two-dimensional mountains. The scale of these vortices is about 1.5H 
in all directions. Clearly, these vortices are expected to play a major role 
in the mixing efficiency and turbulence characteristics of wave breaking. 

The longitudinal component of vorticity due to the toroidal vortices also 
consists of counter-rotating vortex pairs. Generation of such longitudinal 
counter-rotating vortices is commonly associated with three-dimensional 
convective instabilities [e.g., Winters & Riley (1992), Andreassen et. al. 
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(1998), and Afanasyev & Peltier (1998)]. It thus appears that three-dimen­
sional convective instability, at least over the central homogeneous portion 
of the mountain, does not set in until a transverse vortex has been formed by 
two-dimensional shear instability. The reason is likely to be that the wave­
generated shear will tend to dampen convective instability in the form of 
longitudinal vorticity in the initial stages, as demonstrated by Deardorff 
(1965). 
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