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ABSTRACT: The inability of the linear wave dispersion relation to characterize the dispersive properties of nonlinear

shoaling and breaking waves in the nearshore has long been recognized. Yet, it remains widely used with linear wave theory

to convert between subsurface pressure, wave orbital velocities, and the free surface elevation associated with nonlinear

nearshore waves. Here, we present a nonlinear fully dispersive method for reconstructing the free surface elevation from

subsurface hydrodynamic measurements. This reconstruction requires knowledge of the dispersive properties of the wave

field through the dominant wavenumbers magnitude k, representative in an energy-averaged sense of a mixed sea state

composed of both free and forced components. The present approach is effective starting from intermediate water

depths—where nonlinear interactions between triads intensify—up to the surf zone, where most wave components are

forced and travel approximately at the speed of nondispersive shallow-water waves. In laboratory conditions, where

measurements of k are available, the nonlinear fully dispersive method successfully reconstructs sea surface energy levels at

high frequencies in diverse nonlinear and dispersive conditions. In the field, we investigate the potential of a reconstruction

that uses a Boussinesq approximation of k, since such measurements are generally lacking. Overall, the proposed approach

offers great potential for collecting more accurate measurements under storm conditions, both in terms of sea surface

energy levels at high frequencies and wave-by-wave statistics (e.g., wave extrema). Through its control on the efficiency of

nonlinear energy transfers between triads, the spectral bandwidth is shown to greatly influence nonlinear effects in the

transfer functions between subsurface hydrodynamics and the sea surface elevation.

KEYWORDS: Ocean; Gravity waves; Nonlinear dynamics; Waves, oceanic; Data processing/distribution; In situ oceanic

observations

1. Introduction

In recent years, remote sensing approaches based on lidar

technology (Brodie et al. 2015; Martins et al. 2017b, 2020b) or

stereo-video imagery (de Vries et al. 2011; Guimarães et al.

2020) have seen tremendous developments and now allow the

collectionof accurate anddirectmeasurements of the sea surface

elevation in nearshore areas. Yet, subsurface pressure sensors

and current velocity meters remain the most robust, easy-to-

deploy, and versatile solutions for measuring the transformation

of wind-generated waves as they propagate shoreward. The re-

lationship between subsurface wave-induced hydrodynamics

and the free surface elevation is, however, not straightforward

and has been a subject of research for several decades.

If the pressure field at the sea bottom p is known in both time

and space, linear wave theory allows an estimation of the free

surface elevation z as

ẑ
L,s
(k, t)5K

p
(k)ẑ

hyd,s
(k, t) (1)

K
p
(k)5 cosh(jkjh) , (2)

where �̂ denotes the spatial Fourier transform, k is the wave-

number, t is the time variable,Kp refers to the pressure transfer

function, and h is the mean water depth. The ‘‘s’’ subscripts

used in Eq. (1) for the hydrostatic (zhyd,s) and linear (zL,s) re-

constructions of z are intended to highlight the spatial char-

acter of these reconstructions. The hydrostatic reconstruction

zhyd,s is simply related to the spatially varying pressure field p as

z
hyd,s

(X, t)5
p2p

a

rg
2h , (3)

where X denotes the two-dimensional spatial coordinate, pa is

the atmospheric pressure, g is the acceleration of gravity, and

r is the water density. In this context, the linear wave theory

also provides a direct relation between the time- and spatially

varying orbital wave velocities u at the bottom and zL,s:

ẑ
L,s
(k, t)5K

u
(k)û (k, t) (4)

K
u
(k)5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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s
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where Ku refers to the transfer function for orbital wave ve-

locities. In a similar way that p needs to be spatially known in
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Eq. (1), Eq. (4) requires knowledge of the spatial evolution

of u.

Recently, the first nonlinear fully dispersive reconstruction

method for irregular waves was proposed by Bonneton and

Lannes (2017):

z
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5 z
L,s

2
1

g
›
t
(z

L,s
›
t
z
L,s
), (6)

where ›t is the partial time derivative operator and the ‘‘NL,s’’

subscript is used to refer to the nonlinear spatial reconstruction

of z. Accounting for nonlinearities in the wave field leads to a

better reconstruction of z, with an accurate description of en-

ergy levels at high harmonics (Bonneton and Lannes 2017;

Mouragues et al. 2019). Since the linear spatial reconstruction

zL,s requires knowledge of the temporal and spatial evolution

of p (or u), the application of Eq. (6) in the field is somewhat

limited in its current form.However, it is important to note that

the formula does not involve any spatial derivative. Thus, it can

be used locally (at a fixed position X), provided that an ap-

proximation of zL,s is available.

In typical nearshore applications, the pressure is measured

at a few locations above the seabed and wavenumber spectra

are hardly retrieved from such measurements. The most

common approach replaces the spatial Fourier transforms in

Eqs. (1) and (4) with temporal ones and uses the linear wave

dispersion relation [Eq. (9) below] to link the spatial and

temporal information of the wave field. This approach corre-

sponds to the classic transfer function method (TFM; e.g., see

Bishop and Donelan 1987) and can be written as follows:

~z
L,kL

(v,X)5K
p
(v) ~z

hyd
(v,X) (7)

K
p,L

(v)5 cosh(k
L
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L
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where ~� denotes the temporal Fourier transform, v 5 2pf is

the angular frequency and kL denotes the (single-valued) wave-

number magnitude solution to the linear dispersion equation

(kwill, hereafter, denote the wavenumbermagnitude). The terms

zL,kL and zhyd refer to the linear and hydrostatic temporal recon-

structions of z at a single location X in space, respectively.

Since the TFM relies on the linear dispersion relation, it

suffers from its limitations in intermediate and shallow water

depths, where nonlinear interactions between triads of fre-

quencies intensify (Phillips 1960; Elgar and Guza 1985a). The

nonlinear energy transfers associated with these interactions

cause large deviations of dominant wavenumbers k at high

frequencies from theoretical values by the linear dispersion

relation (Thornton and Guza 1982; Elgar and Guza 1985b;

Herbers et al. 2002; Martins et al. 2021). At a given frequency,

these deviations were recently shown to increase with the rel-

ative amount of forced energy and the efficiency of nonlinear

energy transfers, which is strongly controlled by the spectral

bandwidth (Martins et al. 2021). The large overestimation of

dominant wavenumbers at high frequencies combined with the

exponential growth ofKp,L [see Eq. (8)] lead to the blow-up of

reconstructed sea surface energy levels in nearshore areas.

Here, it is important to remind that this blow-up only occurs for

temporal reconstructions employing the linear dispersion re-

lation [Eq. (9)], and not for linear reconstructions in space

(Bonneton and Lannes 2017; Mouragues et al. 2019). A prag-

matic solution to this blow-up consists in applying a cutoff

frequency. The energy missed in the sea surface spectrum tail

with the TFM explains why this approach fails at correctly de-

scribing the nonlinear shape and peaky character of nearshore

waves. Recent work have reported errors on the significant wave

height typically between 5% and 10% near or within the surf

zone, while these can reach up to 30% and 60% for individual

wave heights and third-order parameters, respectively (Martins

et al. 2017a; Bonneton et al. 2018;Mouragues et al. 2019;Martins

et al. 2020b). Martins et al. (2021) observed that nonlinear ef-

fects on the dispersion relation of irregular waves could be im-

portant in water depths characterized by m 5 (kph)
2 up to 0.5,

where kp is the peak wavenumber. Thus, nonlinear effects in the

transfer functions are also expectedmuch farther seaward of the

breaking point. At these depths, nonlinear effects can be better

accounted with Eq. (6), however, applying the nonlinear for-

mula to an approximation of zL,s based on the linear dispersion

relation (i.e., zL,kL) is not satisfactory due, in part, to the need

for a cutoff frequency to overcome the issues detailed above

(Bonneton and Lannes 2017).

Near the breaking point or in the surf zone, most components

of the sea surface spectrum associated with a typical incident

swell propagate approximately at the speed of nondispersive

shallow-water waves (Thornton andGuza 1982; Elgar andGuza

1985b; Herbers et al. 2002; Martins et al. 2021). For such shallow

water depths, Bonneton et al. (2018) proposed a nonlinear

weakly dispersive reconstruction method, which works in the

temporal domain and has the advantage of not requiring prior

knowledge of k(v). Furthermore, the reconstruction has

the benefit of not requiring a cutoff frequency, except for

preventing noise overamplification at high frequencies. The

linear (SL) and nonlinear (SNL) weakly dispersive formula

derived by Bonneton et al. (2018) read

z
SL

5 z
hyd

2
h

2g
›2t zhyd , (10)
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The nonlinear formula [Eq. (11)] was shown to accurately

describe the sea surface energy levels at high harmonics both

outside (Bonneton et al. 2018; Mouragues et al. 2019) and in

the surf zone (Martins et al. 2020a,b). The correct description

of the sea surface spectrum tail leads to more accurate esti-

mates of high-order wave shape parameters (e.g., the wave

skewness) and wave-by-wave statistics (including wave ex-

trema). The weakly dispersive approach performs best in the

shallow water limit, where all wave components travel at the

speed of nondispersive shallow-water waves. This occurs

principally around the mean breaking location and in the surf

zone. For narrow-banded swell incident wave conditions, good

performances of the weakly dispersive formula are also ex-

pected much farther seaward in the shoaling zone [m up to 0.2

in Mouragues et al. (2019), m ; 0.24 in this study].
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Even when the most energetic components of a typical in-

cident wave field enter shallow waters (m& 0:3), free compo-

nents can still dominate over forced ones in the high-frequency

part of the spectrum. This is expected to occur for m typically

between 0.15 and 0.3, in the presence of relatively strong wind

seas or for wave conditions characterized by broad or bimodal

spectra. In such situations, the conditions become too disper-

sive at high frequencies for the weakly dispersive assumption

to remain valid. A more general approach is then required to

account for the presence of both free components at high fre-

quencies and intense nonlinear effects in the shoaling region.

The objective of this paper is to propose and assess a non-

linear fully dispersive reconstruction of the free surface ele-

vation from subsurface hydrodynamicmeasurements (pressure

or wave orbital velocities). This nonlinear fully dispersive

temporal reconstruction is obtained via a local application of

Eq. (6) with an approximation for the linear spatial recon-

struction zL,s. This approximation is based on the determina-

tion of the dominant wavenumber spectra k(v) characterizing

the wave field. We show that such information are a key

determinant for accurately estimating sea surface energy levels

at high frequencies, wherever nonlinear effects are significant.

Using the dominant wavenumber spectra k(v) allows to

accurately quantify the relative contribution—in an energy-

averaged sense—of both free and forced components. It also

appears critical to correctly quantify both linear and nonlinear

effects in the pressure and wave orbital velocities transfer

functions for nonlinear nearshore waves.

After describing the theoretical and practical aspects of the

different temporal reconstruction methods (section 2), the

experimental datasets used herein are briefly presented

(section 3). The nonlinear fully dispersive reconstruction is

first assessed (section 4) with a laboratory dataset collected at

high spatial and temporal resolution [Gently Sloping Beach

Experiment (GLOBEX); Ruessink et al. 2013]. This dataset

represents an ideal situation, where unidirectional waves are

considered and k spectra can be accurately determined from

the highly resolved surface elevation measurements. The

present approach is then tested in the field (section 5) for the

more challenging case of directionally spread waves (Anglet

experiment; Mouragues et al. 2020a). In this case, the re-

constructions use an approximation for k derived from the

Boussinesq theory of Herbers et al. (2002), applied either to

the hydrostatic or the directly measured surface elevation

signal. The results are discussed in section 6, with a particular

focus on the role of the spectral bandwidth on nonlinear ef-

fects in the transfer functions. Section 7 summarizes the re-

sults of this study and provides some perspectives.

2. Theoretical and practical aspects of the
reconstruction methods

Prior to describing the reconstruction methods, it is impor-

tant to note that the approaches based on temporal Fourier

transforms suppose that for any frequency v, k(v) is uniquely

defined. For the TFM, such a relation is provided by the linear

relation dispersion [Eq. (9)], which considers the wave field

to be composed by free components only. In the nearshore

region, however, both forced and free components can coexist

at a given frequency meaning that energy is spread across

different wavenumbers. A dominant wavenumber, repre-

sentative of this mixed sea state in an energy-averaged sense,

thus needs to be used for temporal reconstruction methods.

This is a fundamental difference with spatial reconstructions

[cf. Eqs (1), (4), and (6)], which directly address the energy

repartition across several wavenumbers. If E(k, v)—the local

wavenumber–frequency energy density spectrum of the sto-

chastic process z (i.e., irregular waves)—is known, such a

representative wavenumber can be defined through the root-

mean-square average wavenumber krms (Herbers et al. 2002):

k
rms

(v)5

ð‘
2‘

ð‘
2‘

jkj2E(k,v)dkð‘
2‘

ð‘
2‘

E(k,v)dk

2
664

3
775
1/2

. (12)

In the following, representative k(v) spectra are determined

with two different methods. For unidirectional irregular waves

propagating in the laboratory (GLOBEX), dominant wave-

number spectra kmeas are estimated directly from cross-

spectral analysis between adjacent wave gauges. In practice,

we observe that such spectral estimates represent the energy

spread across several wavenumbers (see, e.g., appendix A of

Martins et al. 2021) and are hence equivalent to krms [Eq. (12)].

In the field, krms is estimated from the pressure and directly

measured surface elevation data collected from single sensors

using the Boussinesq theory of Herbers et al. (2002).

a. Linear reconstruction methods

For linear waves, k(v) can be determined from the linear

wave dispersion relation [Eq. (9), k 5 kL]. In this case, the

transfer function for u measured at dm above the seabed re-

duces to

K
u,L

(v)5
sinh(k

L
h)

v cosh(k
L
d
m
)
, (13)

which corresponds to the classic TFM (e.g., see Guza and

Thornton 1980), while for the pressure, it simply reads

K
p,L

(v)5
cosh(k

L
h)

cosh(k
L
d
m
)
. (14)

This temporal reconstruction of z with the TFM will be de-

noted with the ‘‘L,kL’’ subscript.

The second and third linear temporal methods investigated

here use measured (kmeas) or predicted (krms) dominant

wavenumbers to approximate the spatial reconstruction zL,s in

Eq. (6). This is done by directly providing these dominant

wavenumbers to either Kp [Eq. (2)] or Ku [Eq. (5)], depending

on which hydrodynamic variable is measured, and replace the

spatial Fourier transformwith a temporal one. This ensures the

correct representation of energy spreading across several

wavenumbers (e.g., presence of both free and forced compo-

nents at a particular frequency), and is the key element behind

the present fully dispersive reconstruction. The second linear

reconstruction, denoted with the ‘‘L,kmeas’’ subscript, only
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concerns the laboratory dataset (GLOBEX) for which direct

estimates of dominant wavenumbers are available (kmeas). The

corresponding reconstruction problem reads:

~z
L,kmeas

(v,X)5K
u
(v)~u(v,X) (15)

K
u
(v)5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tanh(k

meas
h)

gk
meas

s
cosh(k

meas
h)

cosh(k
meas

d
m
)
. (16)

The third linear reconstruction, denoted with the ‘‘L,krms’’

subscript, provides the transfer function Kp [Eq. (2)] and Ku

[Eq. (5)] with the approximation for krms given by Herbers

et al. (2002):

k
rms

(v)5 k
sw
(v)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11b

fr
(v)2b

am
(v)

q
, (17)

with

k
sw
(v)5

vffiffiffiffiffiffi
gh

p , (18)

b
fr
(v)5

hv2

3g
, (19)

b
am
(v)5

3

2hE(v)

ð‘
2‘

RefB(v0,v2v0)g dv0 , (20)

where E(v) and B(v1,v2) are the spectral and bispectral den-

sities of z, respectively, and Re{�} denotes the real part. The

bispectrum is here defined following Kim and Powers (1979):

B(v
1
, v

2
)5 E[A(v

1
)A(v

2
)A*(v

1
1v

2
)] , (21)

where A(v) are the complex Fourier coefficients, * denotes

the complex conjugate, and E is an expected, or ensemble

average, value. Equation (17) is based on the evolution

equations for the Fourier components of a wave field devel-

oped by Herbers and Burton (1997) and was derived assum-

ing that the wave field is weakly nonlinear, weakly dispersive,

and that these effects are of similar order (Boussinesq approxi-

mation). By introducing the nonlinear parameter « 5 Hs/2h,

whereHs is the significant wave height, this condition is met for

Ursell numbers Ur5 «/m ; O(1). Herbers et al. (2002) further

assume the water depth to be slowly varying in the direction of

propagation, which with our current notation writes b/
ffiffiffiffi
m

p � 1,

where b is a characteristic bottom slope. For the cases investi-

gated next, this is always fulfilled (b/
ffiffiffiffi
m

p
5 0:014–0:2 during

GLOBEX; b/
ffiffiffiffi
m

p
5 0:027–0:04 in Anglet).

The leading-order term of Eq. (17) (ksw) represents the

wavenumber given by the dispersion relation for nondisper-

sive shallow-water waves [Eq. (18)] while bfr and bam are

second-order frequency and amplitude dispersion terms, re-

spectively. If the amplitude dispersion effects are neglected

[bam 5 0 in Eq. (17)], we can also define a linear Boussinesq

wavenumber kB. Only real values of the bispectrum con-

tribute to amplitude dispersion effects at the order consid-

ered in this theory [O(m, «), see Herbers et al. 2002].

Although the present approach is fully dispersive with kmeas

(i.e., no hypothesis required on the wave field dispersive re-

gime), the approximation of krms is only weakly dispersive. In

the following, the linear reconstruction based on krms will

hence be described as moderately dispersive, in order to

avoid confusions with the weakly dispersive approaches of

Bonneton et al. (2018).

b. Weakly nonlinear reconstruction methods

The nonlinear reconstruction formula provided in Eq. (6)

is based on a linear spatial reconstruction of z computed

either from the pressure [Eq. (1)] or orbital wave velocities

[Eq. (4)] measured at the sea bottom. Bonneton and Lannes

(2017) demonstrated that for linear waves, the spatial Fourier

transform in these reconstructions can be replaced with the

temporal one so that the spatial [Eqs. (1) and (4)] and tem-

poral [Eqs. (7) and (15)] reconstructions are equivalent. This

replacement can also be performed in the case of nonlinear

waves of permanent forms (all modes propagating at a speed

C), as long as k(v/C) is used instead of the linear wave dis-

persion relation (Bonneton and Lannes 2017).

The situation for the more general case of fully dispersive

irregular waves propagating in the nearshore is not as straight-

forward analytically since k(v) is not unique. For replacing the

spatial Fourier transform with a temporal one in such cases, we

here assume that using the dominant wavenumbers krms is suf-

ficient to correctly represent the energy spreading across dif-

ferent wavenumbers and pass from a spatial to temporal

reconstruction problem. With the hypothesis that zL,kmeas
or

zL,krms
are accurate approximations of zL,s at a given location in

space, a local and temporal application of Eq. (6) then becomes

possible. The nonlinear reconstruction based on directly mea-

sured dominant wavenumbers (subscript ‘‘NL,kmeas’’) or those

predicted with Boussinesq theory (subscript ‘‘NL,krms’’) are

obtained by replacing zL,s in Eq. (6) with the corresponding

linear reconstruction, described in the previous section. For the

reconstruction that uses directly measured dominant wave-

numbers kmeas, this reads:

z
NL,kmeas

5 z
L,kmeas

2
1

g
›
t
z
L,kmeas

›
t
z
L,kmeas

� �
. (22)

On the right-hand side of Eq. (22), the nonlinear term with

temporal derivatives of zL,kmeas
represents the contribution from

nonlinear interactions to the reconstructed z. Note that for the

case of p or umeasured at an arbitrary height above the seabed,

an extra term arises in Eqs. (6) and (22); the reader is referred

to Eq. (C4) of Bonneton and Lannes (2017) for the complete

formula.

Equation (6) is valid for «
ffiffiffiffi
m

p � 1 and hence covers most

typical nearshore applications, i.e., from waves of small

steepness propagating in intermediate water depths to large-

amplitude waves in shallow water depths. Like all the linear

reconstructions investigated above, it was derived assuming

that the flow is irrotational, meaning that the flow velocity

potential is solution to the Laplace equation. The bottom

contribution to the nonlinear formula is here neglected, since

these terms are negligible over mildly sloping beaches as

those considered here (see section 3.4 of Bonneton and

Lannes 2017). Over steep slopes, the bottom contribution to

the nonlinear formula in the fully dispersive regime remains

an open research question. Unlike the linear reconstructions
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presented above, the nonlinear correction is locally consid-

ered to be one-dimensional. The directional spreading is

hence assumed to be small enough so that k approximates

well the magnitude of the wavenumber projected in the main

direction of propagation. For large directional spreading

angles or crossing seas, nonlinear energy transfers toward

high harmonics become slightly less efficient (Herbers and

Burton 1997; deWit et al. 2020). Thus, in such situations, Eqs.

(6) and (22) could slightly overestimate the intensity of

nonlinear interactions.

In the following, we show that both zNL,kmeas
and zNL,krms

re-

constructions successfully reproduce energy levels at high

frequencies. In practice, however, a cutoff frequency vc in the

linear reconstructions zL,kmeas
and zL,krms

is still needed for two

distinct reasons. For the fully dispersive approximation zL,kmeas
,

the cutoff is mostly intended for not overamplifying noise in

the current/pressure data, which leads to slight or moderate

overestimations of energy levels at high frequencies. For the

moderately dispersive approximation zL,krms
, it is mostly in-

tended to limit the effects originating from inaccuracies in krms

spectral estimates at high frequencies. As for the TFM, these

inaccuracies at high frequencies potentially lead to a blow-up

of sea surface energy levels. Both situations hence have very

distinct origins and effects on the reconstructed signal and will

be discussed accordingly. The different temporal reconstruc-

tions and their associated range of application are recapitu-

lated in Table 1.

3. Experimental datasets

a. GLOBEX

The laboratory dataset was collected during GLOBEX,

which was performed in a 110-m-long, 1-m-wide, and 1.2-m-

high wave flume located in the Scheldegoot in Delft, the

Netherlands (Ruessink et al. 2013). During these experiments,

free surface elevation and current velocity data were collected

at high spatial and temporal resolution in order to study the

transformation of short and infragravity waves propagating

over a mildly sloping beach (e.g., see de Bakker et al. 2015;

Tissier et al. 2015; Rocha et al. 2017). The high spatial reso-

lution was obtained by repeating each wave test 10 times and

moving the wave gauges (sampling at 128Hz) across the 1:80

concrete beach (see Fig. 1). In addition to wave gauges, five

electromagnetic current meters (ECM) were fixed to the

movable trolleys and allowed the collection of current veloci-

ties at numerous cross-shore locations. An acoustic Doppler

velocimeter (ADV) was also deployed at four different loca-

tions, as shown in Fig. 1.

This study concentrates on the 70-min-long irregular wave

tests of the A series (A1, A2, A3; see Ruessink et al. 2013)

during which JONSWAP spectra were imposed at the wave

paddle. These wave tests reproducedmoderate to energetic sea

conditions characterized by broadband to narrowband sea

surface spectra; see Table 2. For these experiments, dominant

wavenumber k were computed via cross-spectral analyses of

the highly resolved surface elevation dataset (Martins et al.

2021). Besides their relevance for verifying the proposed fully

dispersive approach, these direct measurements are particu-

larly useful to assess the accuracy of the Boussinesq predictions

of krms [Eq. (17)] (Herbers et al. 2002) and the corresponding

reconstructions. Indeed, in most typical field situations, mea-

surements of dominant wavenumbers k are not available and

Eq. (17) remains the only option to get an estimation of this

quantity. For the GLOBEX dataset, bispectra in Eq. (17) were

computed on the free surface elevation signals downsampled

to 16Hz by averaging estimates from 126 records of 128 s,

which were overlapping by 75%. Statistical stability was in-

creased by merging estimates over three frequencies (e.g., see

Elgar and Guza 1985a) yielding approximately 150 equivalent

degrees of freedom, and a spectral resolution of 0.023Hz. The

measured and predicted dominant wavenumbers are used in

the following to reconstruct the free surface elevation from

cross-shore current velocities measured with the ECMs. As the

ADV data contained more noise at high frequencies, the data

from this sensor was not used for the reconstruction but only to

calibrate current velocities as measured by the ECMs (see

online supplemental material). Energy spectra of u and z were

computed by averaging estimates from 63 Hann-windowed

records of 128 s, which were overlapping by 50%, yielding

approximately 70 equivalent degrees of freedom, and a spec-

tral resolution of 0.008Hz.

b. Anglet field experiment

In addition to the GLOBEX dataset, we also use data col-

lected inAnglet, France, during field experiments conducted at

La Petite Chambre d’Amour beach from 3 to 26 October 2018

(Mouragues et al. 2020a,b). These experiments aimed at

studying the wave-induced circulation occurring along this

geologically constrained beach under varying incident wave

conditions. The data from two particular current profilers are

used: SIG1, a Nortek Signature 500 kHz continuously sampling

the near-bottom pressure and Eulerian fluid velocities across

the vertical at 4Hz, and SIG2, a Nortek Signature 1000 kHz

that sampled similar quantities at 8Hz. Additionally, both in-

struments continuously tracked the free surface elevation by

acoustic means [acoustic surface tracking (AST)]. The SIG1

and SIG2 pressure sensors were deployed at 0.6 and 0.69m

above the seabed in mean water depths of 13.9 and 8.1m, re-

spectively. The depth contours around both instruments are

nearly parallel to the coastline [see Mouragues et al. (2020a)

for further details].

TABLE 1. Synthesis of the temporal reconstruction methods

investigated in this study and their range of application.

Reconstruction of z Type of approach and range of application

zSL 2 zSNL Weakly dispersive approximation of zL,s
and zNL,s—valid in shallow water only

zL,kL Fully dispersive approximation of

zL,s—valid for linear waves only

zL,krms
2 zNL,krms

Moderately dispersive approximation of

zL,s and zNL,s based on a Boussinesq

estimate of krms

zL,kmeas
2 zNL,kmeas

Fully dispersive approximation of zL,s and

zNL,s—valid for «
ffiffiffiffi
m

p � 1
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Similar to the GLOBEX experiments, two contrasting events

in terms of incident energy and frequency bandwidth were se-

lected among the nearly two weeks during which both instru-

ments collected data simultaneously. Both events consider

shoaling waves outside the surf zone so that the measurements

from the AST remain fully reliable. The offshore significant

wave height Hs and peak wave period Tp measured at the

nearest wave buoy [Centre d’Archivage National des Données
de Houle In Situ (CANDHIS) buoy 06402, located 3.5 km off

the coast in 50-m water depth] were quite similar during both

events withHs; 2–2.5m andTp; 13 s. CaseA (low tide at 0100

local time 15 October 2018) corresponds to a moderate energy

event characterized by (frequency) broadband sea surface

spectra, while case B (high tide at 1800 local time 13 October

2018) is a relatively more energetic event characterized by nar-

rowband sea surface spectra. The wave directional spreading

angle measured offshore was weak during both events, with

mean values of 278 and 208 during caseAandB, respectively (208
at the energy peak for both events). The offshore mean wave

direction was estimated between 2908 and 3008 W, which cor-

responds to amean incident angle smaller than 108 relative to the
beach orientation. The temporal mean depth-averaged currents

U observed at the two sensors location were ,0.1m s21 during

both events which, at the highest frequency of interest here

(5.5fp 5 0.43Hz, with fp the peak wave frequency), corresponds

to mean current to (linear) wave phase speed ratioU/c,0.03 at

all times. The backgroundmean current is therefore neglected in

the present study. Other relevant parameters for these events

are given in Table 3.

Dominant krms were computed from two different sources:

zhyd and zAST, the free surface directly measured with the

AST. Bispectra were computed from 2.2-h-long detrended

time series using 61 records of 512 s, which were overlapping

by 75%. Stationarity was ensured by selecting ;1.1 h before

and after low (case A) or high tide (case B), the maximal

water depth variation being only 0.36m. Energy spectra of

z were computed by averaging estimates from 61 Hann-

windowed records of 512 s, which were overlapping by 75%.

Statistical stability was increased by averaging spectral and

bispectral estimates over three frequencies yielding approx-

imately 103 and 73 equivalent degrees of freedom, respec-

tively, and a frequency resolution of 0.0059Hz for both

estimates.

4. Assessment of the nonlinear fully dispersive
reconstruction methods

In this section, the different reconstruction methods pre-

sented in section 3 are assessed using the dataset collected

during GLOBEX, for which measurements of k(v) are

available [denoted kmeas(v)]. We focus on two of the four

regimes of propagation (I–IV) described in Martins et al.

(2021): a shoaling situation (stage II) and near-breaking sit-

uation (stage III). Besides being of little interest in the

present context, the linear regime (stage I) occurs in the

deepest section of the flume (up to ;x 5 15m) and hence

cannot be addressed here since the first current meter was

located at x 5 24.86m. Similarly, the stage corresponding to

FIG. 1. Elevation z of the 1:80 concrete beach against the cross-shore distance x in the Scheldegoot flume during

GLOBEX. The wave paddle is located at x 5 0m. The gray ‘‘1’’ symbols show the position of the wave gauges

while red circles and green triangles indicate the position of the electromagnetic current meters and acoustic

Doppler velocimeters, respectively.

TABLE 2. Significant wave height Hs and discrete peak wave

frequency fp imposed during the three irregular wave tests of

GLOBEX. The peak enhancement g of the JONSWAP spectra

characterizes its spectral bandwidth: a value of 3.3 corresponds to

broad spectra while a narrowbanded spectra is imposed with

g 5 20.

Test Hs (m) fp (Hz) g (—)

A1 0.10 0.633 3.3

A2 0.20 0.444 3.3

A3 0.10 0.444 20

TABLE 3. Relevant parameters for the two events from the

Anglet experiments (Mouragues et al. 2020a): significant wave

height Hs, peak wave period Tp, mean water depth h, dispersion

parameterm, nonlinearity parameter «5Hs/2h, andUrsell number

Ur 5 «/m.

Burst Hs (m) Tp (s) h (m) m (—) « (—) Ur

SIG1–case A 2.0 13.0 13.1 0.34 0.08 0.23

SIG1–case B 2.7 13.0 15.3 0.40 0.09 0.22

SIG2–case A 2.2 13.0 7.2 0.18 0.15 0.84

SIG2–case B 3.2 13.0 9.5 0.24 0.17 0.72
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surf zone conditions (stage IV) is not covered here due to

limitations and uncertainties in the measurements collected

;1 cm from the flume bottom, in the vicinity of the boundary

layer [see also Aubrey and Trowbridge (1985) for a discussion

of ECMs in such conditions]. Nonetheless, the weakly dis-

persive reconstruction of Bonneton et al. (2018) was already

shown to accurately describe both the sea surface energy

content at all frequencies and the wave-by-wave character-

istics in surf zones (Martins et al. 2020a,b).

The current velocity density spectra Eu(v) corresponding to

stages II and III are displayed in Fig. 2. The two wave tests

compared here (A2 and A3) differ in the energy and spectral

bandwidth imposed at the paddle (see also Table 2): A2 cor-

responds to energetic conditions with broadband spectra while

for A3, the conditions are typical of a swell (moderate energy

and narrowband spectrum). For both tests, the cutoff fre-

quency for not overamplifying noise in the measurements was

determined at 3.35vp, with vp the peak wave angular fre-

quency, based on the slope changes occurring onEu(v) around

this frequency.

a. Shoaling of weakly nonlinear waves (II)

During stage II, nonlinear energy transfers between prin-

cipal components promote the dominance of bound high

harmonics in wavenumber spectra (see Figs. 3a,b). The dif-

ferences in dispersive properties between wave tests A2 and

A3 are mainly explained by differences in forced-to-free

energy ratio at high harmonics, as estimated in Martins

et al. (2021). Although less energetic than for A2, the narrow-

banded condition imposed during A3 led to more effective

nonlinear energy transfers by sum interactions [(vp, vp)/ 2vp;

(vp, 2vp) / 3vp], so that 70% and 90% of the energy was es-

timated to be forced around 2vp and 3vp, respectively. These

intense energy transfers explain why measured dominant k(v)

at high harmonics (e.g., 2vp, 3vp, and 4vp) follow the simple

relation v/c(vp) (Fig. 3b), suggesting that these components

mostly propagate at the same speed as the peak component vp.

In contrast, during A2, dominant k(v) at high frequencies lie

between v/c(vp) and values predicted by the linear wave dis-

persion relation (Fig. 3a), which is explained by the weaker

amounts of forced energy found during this test (around 20%

and 30% at 2vp and 3vp, respectively). The weakly nonlinear

approximation of Herbers et al. (2002) [Eq. (17)] provides

very accurate estimates of the dominant wavenumbers and

describes well its variation across infragravity and gravity

frequency bands up to 2.5vp for both tests. Components at

higher frequencies are too dispersive for Eq. (17) to be ac-

curate and a higher-order theory is probably required. These

results are consistent with those from Herbers et al. (2002)

who focused on weakly dispersive waves for their compari-

sons at vp, 2vp, and 3vp (data for which 3fp . 0.25Hz were

removed for the model assessment).

In such dispersive conditions (m 5 0.5 and 0.4 for A2 and

A3, respectively), the large discrepancies of wavenumbers

predicted by the linear wave dispersion relation have dra-

matic effects on the surface elevation signal reconstructed

with the TFM at high frequencies (see zL,kL in Figs. 3c,d).

Compared to the direct measurements from the wave gauge

(zwg), the TFM induces significant overestimation of energy

levels starting from 2.5vp, where in typical applications, a

cutoff frequency should be applied. Up to 2.5vp, this over-

estimation leads to errors on the significant wave height

Hs and mean wave period Tm02 lower than 2% and 4%, re-

spectively (see appendix for the definition of these bulk pa-

rameters), which is considerably lower than those found in

the field, for relatively more energetic and directionally broad

FIG. 2. Cross-shore current velocity energy density spectraEu(v) computed at the location in thewave flume corresponding to the stages

II (Ur; 0.3) and III (Ur; 0.7) described inMartins et al. (2021). The frequency axis is normalized by the peak frequencyvp, which equals

2.79Hz for both wave test (left) A2 and (right) A3. The value of kph for each test and propagation stage is indicated in the legend. The

separation between the infragravity and gravity band of frequencies (0.6vp) is indicated by the vertical black dashed line. The cutoff

frequency vc applied to the fully and moderately dispersive linear reconstructions is indicated by the vertical red dashed line.

NOVEMBER 2021 MART IN S ET AL . 3545

Unauthenticated | Downloaded 11/22/21 09:38 AM UTC



wave fields (section 5). In contrast with zL,kL, the linear re-

constructions that use measured (zL,kmeas
) or predicted (zL,krms

)

dominant wavenumbers do not blow up. Discrepancies with

zwg tend to increase with frequencies but remain small.

Around 2vp, the zL,kmeas
and zL,krms

reconstructions under-

predict the measured spectra, while zL,kL already slightly overes-

timates them (see inserts in Figs. 3c,d). Differences between

zL,kmeas
and zL,krms

are marginal and concentrate at frequencies

between 3vp and 3.5vp, where the Boussinesq approximation

of krms starts diverging from measurements (Figs. 3a,b). Due

to noise in the ECM data, a cutoff frequency at vc 5 3.35vp

was applied for both wave tests. The extension of zL,kmeas
after

vc shows that noise in the ECM data only results in a plateau

starting around 3.5vp (see Figs. 3c,d). This eventually leads

to a slight overestimation of energy levels after 5vp. In con-

trast, the reconstruction zL,krms
explodes at high frequencies

FIG. 3. (a),(b) Measured and predicted dimensionless wavenumber spectra during stage II (h 5 0.56m for A2, h5 0.44m for A3). Measured

wavenumber kmeas is computed from cross-spectral analysis between adjacent wave gauges while krms is predictedwithEq. (17); kL is the solution to

the linear wave dispersion [Eq. (9)]. (c)–(f) The surface elevation energy density spectraE(v) of the different linear and nonlinear reconstructions.

For both zL,kmeas
and zL,krms

, the dashed lines correspond to the reconstructions without a cutoff frequency atvc (vertical gray dashed line at 3.35vp).

The separation between the infragravity and gravity band of frequencies (0.6vp) is indicated by the vertical black dashed line. In all panels, the

frequency axis is normalized by the peak frequency vp, which equals 2.79Hz for both wave test A2 (left panels) and A3 (right panels).
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due to the deviations of krms from observed dominant wave-

numbers at frequencies higher than 3vp.

For both wave tests, the nonlinear reconstructions zNL,kmeas
and

zNL,krms
show excellent skills in estimating energy levels across all

frequencies (Figs. 3e,f). Around the second harmonic (see inserts),

remarkable improvements are obtained with the nonlinear for-

mula compared to zL,kmeas
and zL,krms

. Differences between the two

nonlinear reconstructions are very small and concentrate at high

frequencies (e.g., see around 4vp for A2). Since the cutoff fre-

quency for the linear reconstructions zL,kmeas
and zL,krms

was here

applied at 3.35vp (vc in Figs. 2–4), energy levels beyond this fre-

quency principally originate from quadratic interactions between

components around the peak and the second harmonic (Bonneton

and Lannes 2017). For the present case, the inaccuracies of the

Boussinesq approximation of Herbers et al. (2002) after ;3vp

hence have little impact on the nonlinear reconstruction. The

FIG. 4. (a),(b) Measured and predicted dimensionless wavenumber spectra during stage III (h5 0.41m for A2, h5 0.29m for A3). Measured

wavenumber kmeas is computed from cross-spectral analysis between adjacent wave gauges while krms is predicted with Eq. (17); kL is the solution

to the linear wave dispersion [Eq. (9)]. (c)–(f) The surface elevation energy density spectra E(v) of the different linear and nonlinear re-

constructionsy. For both zL,kmeas
and zL,krms

, the dashed lines correspond to the reconstructionswithout a cutoff frequency atvc (vertical gray dashed

line at 3.35vp). The separation between the infragravity and gravity band of frequencies (0.6vp) is indicated by the vertical black dashed line. In all

panels, the frequency axis is normalized by the peak frequencyvp, which equals 2.79Hz for both wave test A2 (left panels) andA3 (right panels).
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accuracy of krms predictions up to and slightly beyond the second

harmonic allow good performances of the reconstruction zNL,krms
at

all frequencies (Figs. 3e,f).

b. Shoaling of nonlinear waves in the vicinity of the
breaking point (III)

The next regime of propagation (III) considers nonlinear

waves approaching the mean breaking point location. Stage

III differs from II in two principal aspects: 1) amplitude ef-

fects become increasingly important and induce deviations of

O(10%–15%) between k(vp) and predictions by the linear

dispersion relation; 2) the wavenumber and phase velocity

spectra become less frequency dependent. As a result,

wavenumbers are relatively well described by the simple

relation v/c(vp) for both tests (Figs. 4a,b). At these depths

(m ; 0.36 and 0.25 for A2 and A3, respectively), it is worth

noting that this relation almost coincides with the shallow-

water dispersion relation [Eq. (18)]. The Boussinesq ap-

proximation of Herbers et al. (2002) [Eq. (17)] provides very

accurate estimates of dominant wavenumbers up to typically

2.5vp for A2 and 3vp for A3, which is explained by the less

dispersive conditions found for A3 at stage III.

Despite the conditions being less dispersive at this stage,

the inability of the linear wave dispersion relation to predict

wavenumbers at high frequencies still strongly reflects from

the energy density spectra of zL,kL (Figs. 4c,d). Instead of

a clear departure as observed in stage II, energy levels

reconstructed with the TFM are observed to flatten between

2.5vp and 3.5vp and then increase at higher frequencies. As in

stage II, the extension of zL,kmeas
after the cutoff frequency dem-

onstrates that noise in the data is not responsible for the blow-up

at high frequencies in intermediate or shallow water depths.

Reconstructions (zL,kL and zL,krms
) blow up only when these use

wavenumbers that poorly describe the observed dominant dis-

persive properties of the wave field at high frequencies.

The nonlinear reconstructions zNL,kmeas
and zNL,krms

cor-

rectly reproduce the sea surface spectrum for both wave

tests (Figs. 4e,f). While a small overestimation is evidenced

for A2 between 4vp and 5.5vp, differences between re-

constructed and directly measured surface elevation energy

spectra are typically within the 95% confidence interval for A3.

Compared to the linear reconstructions, the nonlinear formula

[Eq. (6)] substantially improves the description of energy levels

at 2vp and 3vp (see inserts in Fig. 4f in comparison with Fig. 4d),

suggesting strong nonlinear effects. Similar to stage II, differ-

ences between zNL,kmeas
and zNL,krms

are marginal, which is again

explained by the fact that krms values diverge from measure-

ments only after the cutoff frequency vc. This is quite a prom-

ising result considering that krms can be estimated in the field

from a single sensor.

c. Wave shape and wave-by-wave statistics

The comparison of zNL,kmeas
and zNL,krms

spectra with direct

measurements attest the capacity of the nonlinear reconstructions

FIG. 5. Comparison of directly measured (zwg) and reconstructed (zL,kL and zNL,krms
) surface elevations normalized by the offshore

amplitude a0 5 0.1m at stage II during the wave test A2 (kph 5 0.72, h 5 0.56m). (a) A 50-s-long sample and (b) a zoom-in around the

extreme wave event occurring around 1042 s (crest elevation ;1.25Hs). (c),(d) The contribution of the nonlinear terms to z, directly

estimated from Eq. (22) as zNL,kmeas
2 zL,kmeas

, and normalized by a0 are shown below the corresponding panel. A low-pass filter at 2.65vp

was applied to the linear reconstruction zL,kL (right before the blow-up, see Fig. 3c).
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to estimate energy levels at all frequencies. However, such

comparisons do not provide information on the wave phase. In

the shoaling region, nonlinear wave interactions contribute to

the observed surface elevation skewness and play an important

role in the occurrence of extreme waves. In this section, we

further investigate the ability of the different reconstructions to

accurately describe the shape and elevation of individual waves.

Figures 5a and 5b show the reconstructed surface elevations

zL,kL and zNL,kmeas
over a sample extracted at stage II during

A2 (kph 5 0.7). This example exhibits a moderately energetic

group (between 1000 and 1015 s) along with an extreme wave

(1040–1045 s, crest elevation ;1.25Hs), and a much calmer

period in between. The contribution of nonlinear interactions

to the reconstructed z, which can be directly estimated from

Eq. (22) as zNL,kmeas
2 zL,kmeas

, is shown in the corresponding

bottom panels (Figs. 5c,d). This comparison first shows that the

TFM is only suitable during the calm period, when waves are

characterized by a low steepness and nonlinear interactions

have a weak contribution to z (Fig. 5c). When the local am-

plitude increases, such as during the first wave group or for the

extreme wave, zL,kL consistently underestimates the height and

the crest elevation of individual waves. This contrasts with

the nonlinear reconstruction zNL,kmeas
, which systematically im-

proves the description of the height and crest elevation of indi-

vidual waves. The zoomed region around the largest wave

(Fig. 5b) further demonstrates the ability of the nonlinear re-

construction to correctly represent the skewed and peaky shape

of extreme waves. Under large-amplitude waves, significant

positive and negative contributions from nonlinear interactions

are observed (Figs. 5c,d). These contribute positively mostly at

the crest level, but also near the surrounding troughs (e.g.,

Fig. 5b), while they contribute negatively at the front and rear of

the wave face. In the case of the extreme wave presented in

Fig. 5b, we note that the nonlinear terms explain 25% of the

maximal crest elevation. Thus, accounting for nonlinear interac-

tions in the reconstruction problem appears critical in the esti-

mation ofwave extrema statistics from subsurfacemeasurements.

These qualitative observations are complemented here

with the comparison of two bulk parameters computed from

both reconstructed surface elevation time series: the wave

skewness Sk (see appendix) and the mean elevation of the

1/10th largest wave crests zc1/10. These two parameters were

computed during both wave test and for both stages II

(Table 4) and III (Table 5). For the broadband conditions

imposed during A2, the underestimation of maximal crests

elevation with the TFM is particularly marked in the shoaling

region (stage II, Table 4), with a value of zc1/10 that is 15%

lower than that computed with zwg. This is consistent with the

observations made on Fig. 5. Closer to the breaking point (see

Table 5), or for narrowband conditions, this underestimation be-

comes less significant. The improved predictions of zc1/10 obtained

with the nonlinear reconstruction zNL,kmeas
further confirm the

ability of the reconstruction to describe individual wave statistics

(zc1/10 within 4% and 1% during A2 and A3, respectively; see

Tables 4 and 5). Thequalitative observationsmadeonFig. 5 about

thewave shape are also consistentwith the values obtained for the

wave skewness Sk. The errors made on this third-order parameter

with zL,kL are within 20%–50% depending on the location and

spectral bandwidth imposed (see Tables 4 and 5), while the non-

linear reconstruction zNL,kmeas
always predict it within 10%.

The relatively better performances obtained duringA3 can be

explained by the narrowbanded conditions, which promoted the

dominance of forced harmonics at high frequencies. Although

both free and forced components can be present, the phase in-

formation retained in a Fourier analysis of the subsurface signal

per frequency is unique. In the nearshore region, this phase

should often be biased toward forced components due to the

weaker attenuation expected for forced components across

depth compared to free ones. For instance, this could explain

the slight overestimation of Sk and zc1/10 at stage II during

A2 (Table 4). Nonetheless, the performance of the nonlinear

fully dispersive reconstruction is largely sufficient to skillfully

estimate wave-by-wave statistics as demonstrated here.

5. Application of the nonlinear fully dispersive
reconstruction to field conditions

The previous section demonstrates that when dominant

k spectra of the wave field are known, the sea surface spectrum

associated with nonlinear shoaling waves can be accurately

estimated at all frequencies with a local application of the

nonlinear formula of Eq. (6) in both shallow (m& 0:3) and in-

termediate water depths (m. 0.3). This is explained by the fact

that temporal reconstructions that use measured k spectra

(here zL,kmeas
) are an accurate local approximation of the linear

spatial reconstruction. Inmost typical field situations, however,

measurements of k(v) are not available. The Boussinesq ap-

proximation of Herbers et al. (2002) for krms [Eq. (17)] remains

for now the only possibility to account for nonlinear effects in

the dispersive properties of a wave field. In this section, the

potential for field applications of the nonlinear moderately1

TABLE 4. Surface elevation skewness Sk and mean elevation of the 1/10th largest wave crests zc1/10 computed from the principal re-

constructions at stage II (kph 5 0.72m for A2, kph 5 0.63m for A3). The relative errors of these parameters are provided between

parentheses.

Wave test A2 A3

Reconstruction zwg zL,kL zNL,kmeas
zwg zL,kL zNL,kmeas

Sk (—) 0.48 (—) 0.25 (47%) 0.51 (7.9%) 0.52 (—) 0.39 (23.7%) 0.50 (3.6%)

zc1/10 (cm) 15.92 (—) 13.60 (14.6%) 16.57 (4%) 8.98 (—) 8.26 (8.1%) 9.07 (1.1%)

1As noted earlier, in this case the fully dispersive character of the

reconstruction is reduced since the approximation of krms is only

weakly dispersive; see Table 1.
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dispersive reconstruction based on krms is investigated with the

data collected during the Anglet experiments.

The accuracy of krms spectral estimates not only depends on

the range of validity of the Boussinesq approach employed in

Herbers et al. (2002), but also on the nature of the signal used to

compute this quantity. In the field, krms is typically computed

from the pressure signal, since the sea surface elevation is the

unknown. Figures 6a and 6b compare krms spectral estimates

computed at the deepest location (SIG1) from two different

sources: the hydrostatic reconstruction zhyd and the directly

measured surface elevation zAST. The deviations of krms from kB
suggest significant nonlinear effects in the dispersive properties

during both events. These effects are strongest for the narrow-

band spectra (Fig. 6b), during which forced high harmonics

dominate [e.g., see around 2fp where krms ; v/c(vp)]. The two

estimates of krms differ by less than 2% at most frequencies for

TABLE 5. Surface elevation skewness Sk and mean elevation of the 1/10the largest wave crests zc1/10 computed from the principal

reconstructions at stage III (kph 5 0.60m for A2, kph 5 0.50m for A3). The relative errors of these parameters are provided between

parentheses.

Wave test A2 A3

Reconstruction zwg zL,kL zNL,kmeas
zwg zL,kL zNL,kmeas

Sk (—) 0.75 (—) 0.60 (19.8%) 0.75 (1.8%) 1.05 (—) 0.85 (19%) 0.95 (9.5%)

zc1/10 (cm) 15.22 (—) 14.46 (5%) 15.84 (4%) 11.31 (—) 10.50 (7%) 11.17 (1.2%)

FIG. 6. (a),(b) Dimensionless wavenumber spectra predicted at SIG1 (h 5 13.1 m for case A, h 5 15.3 m for case B). krms spectra

predicted with Eq. (17) are computed from two different sources: zAST and zhyd. For the sake of readability, only one in two points is

shown. (c),(d) Comparison of the energy density spectra of the different reconstructions with those estimated from the directly

measured surface elevation zAST. The gray vertical dashed lines indicate the cutoff frequency vc used for the moderately dispersive

linear reconstructions zL,krms
. The separation between the infragravity and gravity band of frequencies (0.6vp) is indicated by the

black vertical dashed line. In all panels, the frequency axis is normalized by the peak frequency vp, which equals 0.48 Hz for both

case A (left panels) and B (right panels).

3550 JOURNAL OF PHYS ICAL OCEANOGRAPHY VOLUME 51

Unauthenticated | Downloaded 11/22/21 09:38 AM UTC



case A, with the largest errors (;5%) observed around 4vp,

where predictions of krms are less reliable in such water depths.

For case B, krms values computed from zhyd are 8%–15% lower

than those computed from zAST between 1.5vp and 3vp, which

suggests a negative bias due to the dominance of forced com-

ponents in zhyd at these frequencies. As they concentrate at high

frequencies, where sea surface energy levels are low, differences

in the computations of krms have a relatively small impact on the

reconstructed signals (Figs. 6c,d).

The performances of the nonlinear reconstructions at SIG1

are quite mixed, with an accurate description of energy levels

typically up to 2.5vp, where the predictions of krms are reliable.

At higher frequencies, sea surface energy levels are under-

estimated in both broadband and narrowband cases. In such

water depths andwave conditions [Ur;O(0.2), see Table 3], the

application of Boussinesq theory starts to be questionable. This

most likely explains the limitations of the Boussinesq approxi-

mations of Herbers et al. (2002) for describing the dispersive

properties of the wave field at high frequencies and in particular

the dominance of free components observed at these depths.

This is consistentwith the smaller underestimations observed for

the narrowbanded conditions, which promote the dominance of

forced harmonics at high frequencies. For the two energetic

cases considered here, the TFM exhibits a very similar behavior

as that observed in laboratory conditions: energy levels are

overestimated in a region starting around 2vp (see insert in

Fig. 6d) and up to 3–3.5vp, before the reconstructions blow up.

The larger deviations of krms from kB observed at SIG2

(Figs. 7a,b) compared to those at SIG1 suggest that nonlinear

amplitude effects in the dispersive properties of the wave field

[bam in Eq. (17)] intensify closer to shore during both events.

For the narrowband case B, dominant wavenumbers follow

the simple dispersion relation v/c(vp), suggesting that the

energy at high frequencies is predominantly forced. Similar to

the situation at SIG1, krms estimates computed from the two

sources (zhyd and zAST) during case A differ by less than 2%

except for frequencies larger than 3.5vp (maximum differ-

ence of;6%). However, the krms spectra computed from zhyd

FIG. 7. (a),(b) Dimensionless wavenumber spectra predicted at SIG2 (h5 7.2m for case A, h5 9.5m for case B). krms spectra predicted

with Eq. (17) are computed from two different sources: zAST and zhyd. For the sake of readability, only one in two points is shown. (c),(d)

Comparison of the energy density spectra of the different reconstructions with those estimated from the directly measured surface elevation

zAST. The gray vertical dashed lines indicate the cutoff frequency vc used for the moderately dispersive linear reconstructions zL,krms
. The

separation between the infragravity and gravity band of frequencies (0.6vp) is indicated by the black vertical dashed line. In all panels, the

frequency axis is normalized by the peak frequency vp, which equals 0.48Hz for both case A (left panels) and B (right panels).
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provide quite unreliable values at frequencies between 2.5vp

and 4.5vp for the narrowbanded wave conditions, likely due

to more intense forced components. These estimates can be

easily improved with an iterative process: starting from the

wavenumber spectra k(0)rms computed from zhyd, the wave-

numbers k(j)rms at the iteration j can be recomputed from the

nonlinear fully dispersive reconstruction of z that is based on

k(j21)
rms . Two iterations are sufficient to reach convergence and

decrease the initial mean absolute percentage error of 8%

between the two computations of krms (zhyd and zAST, Fig. 7b)

to around 3%.

In the Boussinesq regime (Ursell number Ur ; 0.8), the

estimations of krms from the AST are highly reliable and ex-

plain the excellent performances reached by the nonlinear

reconstruction zNL,krms
for both broadband and narrowband

events (Figs. 7c,d). For the moderately energetic conditions

characterizing both events, the TFM (zL,kL) leads to strong

overestimations of energy levels at relatively high frequencies

(one order of magnitude around 4vp or 5vp depending on the

case). Most importantly, these overestimations occur at fre-

quencies below the cutoff frequency that would typically be

applied for estimating bulk parameters from this reconstruc-

tion: 4.5vp (0.35Hz) and 4vp (0.3Hz) for cases A and B, re-

spectively. The excess of energy in zL,kL energy spectra up to

these frequencies represent an overestimation of the significant

wave heightHs by 7% and 5% for cases A and B, respectively,

while the mean wave period Tm02 is underestimated by 11% in

both cases. It is worth noting that for optimal choices of cutoff

frequency for zL,kL (i.e., right before the observed blow-up), an

opposite trend for Hs was observed in the surf zone (Martins

et al. 2020b), with the surface elevation variance being con-

sistently underestimated with the TFM due to relatively higher

levels of energy missed at high frequencies. Since large frac-

tions of the sea surface energy levels at high frequencies orig-

inate from interactions between primary components and with

their first harmonics, the choice of vc has only a weak influence

on the computation of bulk parameters from the zNL,krms

reconstructions.

At the wave-by-wave scale, the overestimation of sea sur-

face energy levels by the TFM at relatively high frequencies

leads to the appearance of unrealistic oscillations in zL,kL,

regardless of the spectral bandwidth. This is illustrated in

Fig. 8 with the example of a wave group measured at SIG2

during case B. On the contrary, the proposed moderately

dispersive reconstruction accurately describes the flatter

troughs and the sharpness of the highest waves (see the two

largest waves of the group in Fig. 8a). Compared to the lab-

oratory setting described in section 4c, the contribution from

the nonlinear terms to the reconstructed z (Fig. 8b) shows a

slightly different behavior. At the trough levels, the contri-

bution from nonlinear terms is weak, which suggests that

the spurious oscillations in zL,kL are mostly explained by the

overamplification of high frequency components with the

TFM (and to a lesser extent by nonlinear interactions). In

contrast, nonlinear interactions contribute positively at the

crest level and negatively at the front and rear of the wave

FIG. 8. Example of wave group extracted during case B at SIG2 (kph 5 0.49, h 5 9.5m; 1845 local time 13 Oct

2018): (a) the directly measured (zAST) and reconstructed (zL,kL and zNL,krms
) surface elevations and (b) the con-

tribution of the nonlinear terms to z, directly estimated from Eq. (22) as zNL,krms
2 zL,krms

. A low-pass filter at 3.5vp

was applied to the linear reconstruction zL,kL. Cutting at higher frequencies (e.g., 4vp or 4.25vp) results in even

larger unrealistic oscillations at the trough levels. For this comparison, zNL,krms
corresponds to the reconstruction

using krms values computed from zAST.
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face. Overall, these contributions have for effect to increase

the peakiness of the largest waves. As during GLOBEX, this

explains why the present approach results in improved esti-

mates of the sea surface skewness in the field (15% error in-

stead of 25% for zL,kL).

6. On the influence of the spectral bandwidth and
directional spreading

By controlling the efficiency of nonlinear energy transfers

between triads of frequencies, both the spectral bandwidth and

directional spreading are expected to influence nonlinear ef-

fects on the dispersion relation of irregular waves (Elgar and

Guza 1985b; Herbers et al. 2002, 2003; Martins et al. 2021).

Boussinesq model-based predictions by Herbers and Burton

(1997) suggest only a weak influence from the directional

spreading angle on the efficiency of sum interactions, which are

those of interest here. For spreading angles as large as 608,
these authors predict a weaker growth of high-harmonic bound

waves by only 10%–20%. More recently, de Wit et al. (2020)

noted variations of approximately 10% for smaller directional

spreading angles, which are more commonly found in the

nearshore region. As during GLOBEX, where unidirectional

waves are considered, the differences in dispersive properties

observed for cases A and B in Anglet are hence principally

explained by the contrasting spectral bandwidth characterizing

these events (Herbers et al. 2002; Martins et al. 2021). The

influence of the spectral bandwidth on the transfer functions

Kp andKu is here further analyzed using the field data collected

at SIG2, where krms estimates are most reliable. In particular,

the contrasting wave conditions in terms of spectral bandwidth

provide good examples for discussing the application range of

the weakly dispersive method of Bonneton et al. (2018) and

relate it to the moderately and fully dispersive reconstructions

proposed in this study.

Figure 9 examines, for the two contrasting cases A and B,

the transfer functions Kp corresponding to the different

moderately and weakly dispersive reconstructions investi-

gated here. These are compared with ~zAST/~zhyd, which is the

observed transfer function, needed to pass from zhyd to zAST.

The overestimation of dominant wavenumbers by the dis-

persion relation observed in section 5 results in the consistent

overestimation of Kp at all frequencies (6%–8% at 2vp and

up to a factor 2 around 4vp) for both broadbanded (Fig. 9a)

and narrowbanded (Fig. 9b) incident wave conditions. This is

consistent with the deviations obtained with the TFM from

observed attenuation of u or p across the vertical previously

reported in shallow water depths (e.g., see Constantian 1999;

Elgar et al. 2001).

For the broadband case A, nonlinear amplitude effects in

the dispersion relation [quantified through bam, Eq. (20)] are

weak as evidenced by the slight divergence of krms from kB
(Fig. 7a). The transfer function for the linear reconstruction

zL,krms
(~zL,krms

/~zhyd) already closely matches the observations

and, except at high frequencies, the nonlinear formula only

brings marginal improvements (Fig. 9a). When nonlinear am-

plitude effects are weak, linear wave theory thus provides an

accurate estimation of observed Kp as long as accurate k are

FIG. 9. Transfer functions corresponding to the different linear (zL,kL, zL,krms
, and zSL) and nonlinear (zNL,krms

and zSNL) reconstructions

of z for the broadband case A (kph5 0.42, h5 7.2m) and narrowband case B (kph5 0.49, h5 9.5m) at SIG2. These are compared with
~zAST/~zhyd, which corresponds to the observed transfer function, needed to pass directly from zhyd to zAST. The gray vertical dashed lines

indicate the cutoff frequency vc used for the moderately dispersive linear reconstruction zL,krms
. In both panels, the frequency axis is

normalized by the peak frequency vp, which equals 0.48Hz for both case (a) A and (b) B.
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used (here up to ;3.5vp, see Fig. 9a). Conversely, nonlinear

amplitude effects are much stronger for the narrowband case B

and balance second-order frequency ones around high har-

monics [i.e., bfr ; bam in Eq. (17)]. As a consequence, most

high-frequency components are forced and follow the disper-

sion relation for nondispersive shallow-water waves [Eq. (18)].

Around 2vp and 3vp, ~zL,krms
/~zhyd strongly underestimates the

observed transfer function (by ;30%) and is much closer to

that corresponding to the linear weakly dispersive reconstruction

(~zSL/~zhyd). The contribution of the nonlinear effects to Kp at these

frequencies is much more important than for case A (see con-

trasting differences between ~zL,krms
/~zhyd and ~zNL,krms

/~zhyd for both

cases in Figs. 9a,b). Through its control on the relative importance

of forcedenergy at high frequencies (Elgar andGuza1985a; Padilla

andAlsina 2017;Martins et al. 2021), the spectral bandwidth is here

shown to influence nonlinear effects in the transfer function Kp.

As mentioned in the introduction, the weakly dispersive

formula [Eqs. (10) and (11)] are not appropriate when high-

frequency components are principally free (i.e., conditions

are too dispersive). This is the case here for case A, during

which zSNL underestimates high-frequency energy levels

(Fig. 9a). This occurs even though wave components around

the peak frequency approach the shallow water limit (m ;
0.18, see Table 3). In contrast, when forced components

dominate as during case B (m ; 0.24), the linear weakly and

fully dispersive reconstructions closely match around 2vp and

3vp (i.e., ~zL,krms
/~zhyd ; ~zSL/~zhyd, in Fig. 9b). This explains why

both nonlinear reconstructions almost coincide up to;3.5vp.

The weakly dispersive approach is thus recommendable

only when dominant wavenumbers closely match those of

nondispersive shallow-water waves ksw, i.e., when most wave

components travel at the speed of nondispersive shallow-

water waves. For broadbanded incident wave spectra, this

occurs approximately for m& 0:1–0:15, typically close to the

mean breaking point location and/or in the surf zone. For

narrowbanded incident wave spectra, this can occur in deeper

water depths (m& 0:25) and covers a region extending from

the shoaling zone, where wind seas are negligible compared

to forced components, up to the surf zone. For more disper-

sive conditions, the present nonlinear moderately or fully

dispersive approaches need to be employed.

7. Conclusions and perspectives

This study proposes and assesses a nonlinear fully dispersive

method for reconstructing the free surface elevation from

pressure or wave orbital velocities collected under nonlinear

nearshore waves. It relies on the knowledge of dominant

wavenumber spectra k(v) of the wave field considered in order

to account for varying degrees of nonlinearities (i.e., varying

amounts of forced energy at a particular frequency). In labo-

ratory conditions, where measurements of k(v) are available

(kmeas), the nonlinear fully dispersive reconstruction demon-

strates excellent skills in diverse nonlinear and dispersive

conditions [m ranging from 0.25 to 0.5, Ur;O(0.1–1)], and for

both broadbanded and narrowbanded incident wave condi-

tions. In the field, where measurements of k(v) are rarely

available, the reconstruction can use a Boussinesq approxi-

mation of k (krms; see Herbers et al. 2002). The accuracy of

this moderately dispersive reconstruction is then directly

FIG. 10. Synthesis of the temporal reconstruction methods investigated in this study and their range of validity; taken fromMouragues

et al. (2019) and updated with the knowledge developed in Martins et al. (2020a,b) and in the present study. The x and z represent the

cross-shore and the vertical axes, respectively.
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dependent on that of the Boussinesq approximation for krms.

Overall, the present results suggest that the relation between p,

u and z in nearshore nonlinear waves strongly depends on the

relative importance of forced components at high frequencies

(forced-to-free energy ratio), and our capacity to predict it

through, for instance, predictions of krms.

Figure 10 synthesizes the range of validity of the different

temporal reconstructions investigated in this study. The analysis

of field datawith contrastingwave conditions in terms of spectral

bandwidth clearly illustrates the application range for the

weakly dispersive formula of Bonneton et al. (2018). For broad

spectra, typically with low fractions of forced energy at high

frequencies in intermediate water depths, the application of Eqs.

(10) and (11) should be limited to around the breaking point and

in the surf zone (m& 0:15). In the specific case of narrowbanded

incident wave conditions, the application can be extended much

farther seaward (m& 0:25). The nonlinear fully dispersive ap-

proach described herein can be seen as an extension of previous

work to intermediate water depths and to a wider range of in-

cident wave conditions. In the field, however, the deployment of

several synchronized sensors to robustly estimate kmeas through

cross-spectral analysis is not straightforward (e.g., see Herbers

et al. 2002) and sometimes impossible simply due to limited

experimental resources. As an alternative, the Boussinesq ap-

proximation of krms (Herbers et al. 2002) can be used locally for

estimating the dominant dispersive properties of the wave field

considered: here, similar performances as achieved in the labo-

ratory were reached for Ur typically greater than 0.7–0.8. As

seen in section 6, both the weakly and moderately dispersive

approaches converge in the shallow water limit and provide the

same results. In such cases, however, the weakly dispersive

formula has the advantage to work in the temporal domain and

does not require the computation of bispectra products, which

can be challenging to obtain in shallow water depths (e.g., in

macrotidal environments).

Although currently limited to Ur* 0:5–0:6, the moderately

dispersive approach has a great potential for improving our

estimates of the sea surface spectrum tail compared to the

TFM, which systematically overestimates energy levels at high

frequencies (section 5). This has strong implications for the

processing of data collected in the nearshore region during

storms and extreme events, and also for the accurate estima-

tion of wave shape parameters and wave extrema. A reanalysis

of previously collected datasets that employed the TFM to

study wave-by-wave statistics in the nearshore is most likely

needed and desired. A fully dispersive approximation of k will

be required to improve the performances in conditions char-

acterized by Ur numbers smaller than typically 0.5.
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APPENDIX

Computation of First-, Second-, and Third-Order
Parameters

The jth moment of the surface elevation energy density

spectra is defined as

m
j
5

ð5:5fp
0:6fp

f jE(f )df . (A1)

Except for the TFM reconstruction, all moments are here

evaluated between 0.6fp and 5.5fp, with fp the discrete peak

frequency, so that the reconstruction is assessed in the short-

wave frequency band. For zL,kL, the upper limit of the integral

is here optimally taken at the frequency right before the ob-

served blow-up.

The significant wave height is computed asHs 5 4
ffiffiffiffiffiffi
m0

p
. The

mean wave period Tm02 is defined as

T
m0,2

5

ffiffiffiffiffiffi
m

0

m
2

s
. (A2)

Finally, the wave skewness is computed as

S
k
5

(z2 z)
3

(z2 z)
2
3/2

, (A3)

where the overbar denotes the time-averaged operator. For

consistency with the computation of Hs and Tm02, a low-pass

filter at 5.5fp is first applied to z.
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