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a UMR 5805 EPOC, CNRS - University of Bordeaux, Allée Geoffroy Saint-Hilaire, F-33615, Pessac, France 
b UMR 5519 LEGI, CNRS - University Grenoble Alpes, CS40700, 38058, Grenoble, France  

A B S T R A C T   

The dispersive characteristics of unidirectional irregular waves propagating and breaking over a mildly sloping beach are examined using a highly-resolved labo-
ratory dataset. Cross-spectral analyses are used to determine the cross-shore evolution of (single-valued) dominant wavenumber κ and phase velocity c spectra, and 
lead to the identification of four different regimes of propagation: I - a linear regime where short waves mostly propagate as free components; II - a shoaling regime 
where non-linear effects at high harmonics are significant but primary components follow the linear wave dispersion relation; III - a shoaling regime near the mean 
breaking point location, where amplitude dispersion effects at primary components are important; IV - a surf zone regime, where all components propagate slightly 
faster than non-dispersive shallow water waves. Bispectral analyses performed onshore of the shoaling region show that the presence of forced energy at high 
harmonics, which originate from non-linear interactions between triads of frequencies, are responsible for the deviations of wavenumber and phase velocity spectral 
estimates from predictions by the linear dispersion relation, confirming the findings from previous field-based studies. A Boussinesq approximation of the non-linear 
energy exchanges between triads is then used to quantify the relative amount of forced energy at high harmonics and explain the differences in dispersion properties 
observed in the shoaling region between broad and narrow-band spectra. Larger relative amounts of forced energy at high frequencies, which suggest more efficient 
non-linear energy transfers, are found to be associated with larger deviations of dominant κ and c from predictions by the linear dispersion relation.   

1. Introduction 

Wind-generated surface gravity waves (hereafter short waves) are 
the principal driver of nearshore dynamics. Close to shore, short waves 
eventually break and through this process, they enhance the vertical and 
horizontal mixing of the water column (e.g., Ting and Kirby, 1996; 
Drazen and Melville, 2009; Clark et al., 2012), drive a setup near the 
shoreline (e.g., Longuet-Higgins and Stewart, 1964; Stive and Wind, 
1982) and control the nearshore circulation at various temporal scales 
(e.g., Svendsen, 1984; Peregrine and Bokhove, 1998; Bühler and 
Jacobson, 2001; Bonneton et al., 2010; Castelle et al., 2016). At first 
order, linear wave theory correctly predicts a number of physical pro-
cesses associated with the propagation of short waves, such as the 
refraction or shoaling of directionally spread seas (e.g. Longuet-Higgins, 
1956; Guza and Thornton, 1980; Elgar et al., 1990, and many others). 
However, as waves shoal and interact with a sloping, mobile bed, 
non-linear processes become dominant. These are responsible for the 
changes observed in wave shape, from nearly symmetric to more (hor-
izontally) skewed in the shoaling region and more (vertically) asym-
metric prior to breaking and in the surf zone (e.g. Elgar and Guza, 1985a, 
b; Doering and Bowen, 1995; Michallet et al., 2011; Rocha et al., 2017). 

Non-linear effects not only affect the sea surface elevation but also the 
near-bottom wave orbital velocities and thus play a crucial role in short- 
and long-term beach morphodynamics (Doering and Bowen, 1986, 
1995; Hoefel and Elgar, 2003; Berni et al., 2013; van der Zanden et al., 
2017). 

Weakly non-linear triad interactions (e.g. Phillips, 1960; Freilich 
et al., 1984; Elgar and Guza, 1985a) occurring as short waves propagate 
landward over a sloping bottom are responsible for these changes in the 
wave field. The interaction of two primary components of frequencies f1 

and f2 excite a secondary component f ′ (either sum f1 + f2 or difference 
f1 − f2), which is bound to the statistically independent primary com-
ponents. As such, the bound wave component f ′ does not follow the 
linear wave dispersion relation (Phillips, 1960; Longuet-Higgins and 
Stewart, 1962; Freilich et al., 1984). As opposed to non-linear resonant 
interactions between quadruplets in deep water (Hasselmann, 1962), 
which require very large distances to be effective, non-linear coupling 
between triads in nearshore areas are non- or near-resonant and can be 
very efficient in transforming incident wave spectra over just few typical 
wavelengths (e.g., see Freilich et al., 1984, and the references therein). 
As both forced (or ‘bound’) and free components of directionally spread 
seas can co-exist in a wave field, there is no longer a unique relation 
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between a frequency and wavenumber (e.g. Herbers and Guza, 1994). 
When forced components dominate over a region of the spectrum, large 
deviations from predictions by the linear wave dispersion relation can be 
observed in (single-valued) dominant wavenumber and phase velocity 
spectra (Thornton and Guza, 1982; Freilich et al., 1984; Elgar and Guza, 
1985b). In particular near the breaking point or in the surf zone, most 
wave components of a typical sea-surface spectrum travel at the speed of 
non-dispersive shallow-water waves (e.g., see Thornton and Guza, 1982; 
Elgar and Guza, 1985b; Catalán and Haller, 2008; Tissier et al., 2011), 
which is due to the dominance of amplitude dispersion effects over 
frequency ones (Herbers et al., 2002). As noted by Laing (1986), the 
deviations of measured wave phase speed from predictions by the linear 
dispersion relation, discussed here for nearshore waves, are quite anal-
ogous to those observed in growing seas (e.g., see Ramamonjiarisoa and 
Coantic, 1976; Mitsuyasu et al., 1979; Crawford et al., 1981; Donelan 
et al., 1985). In such conditions, growing short-wave fields are domi-
nated by modulated trains of finite amplitude waves to which 
high-frequency components are bound (Lake and Yuen, 1978; Coantic 
et al., 1981). 

In practice, knowledge on the spatial structure of the wave field is 
generally lacking and the presence of forced energy is therefore difficult 
to quantify. As forced components at high harmonics are characterized 
by lower wavenumbers than free components of the same frequency, 
large errors from depth-inversion algorithms based on the linear wave 
dispersion relation can be expected in regions where non-linear effects 
are important (e.g., see Holland, 2001; Brodie et al., 2018). The 
over-predictions of the dominant wavenumbers at high frequencies also 
explain the commonly reported ‘blow-up’ when reconstructing the free 
surface elevation from sub-surface pressure measurements with the 
linear dispersion relation (Bonneton and Lannes, 2017; Bonneton et al., 
2018; Mouragues et al., 2019; Martins et al., 2020b). This is related to 
the fact that forced high harmonics are much less attenuated across the 
vertical than free components of the same frequency (e.g. Herbers and 
Guza, 1991; Herbers et al., 1992). Nonetheless, most field-based studies 
on non-linear wave transformation in the shoaling region employed 
sub-surface hydrodynamic data (whether pressure or orbital wave ve-
locity), not corrected or corrected for depth-attenuation using the linear 
wave dispersion relation. Field-based studies on wave non-linearity also 
suffer from other limitations such as a poor spatial resolution and the 
distance over which waves can be studied. In particular, the cross-shore 
location where non-linear effects at high harmonics become predomi-
nant remains largely unknown. 

The present paper uses a high-resolution laboratory dataset 
(GLOBEX, see Ruessink et al., 2013) to study the dispersive properties of 
irregular waves propagating and breaking over a mildly sloping beach. 
Besides confirming past findings, the GLOBEX dataset stands out from 
previously-published field observations for several reasons. The free 
surface is directly measured with wave gauges and it is highly-resolved 
in space (several points per wavelength at any stage of propagation). The 

former aspect removes uncertainties currently existing on energy levels 
at high harmonics as measured in the field by sub-surface pressure 
sensors, and where the choice of the surface elevation reconstruction 
method has a strong influence (Bonneton et al., 2018; Mouragues et al., 
2019; Martins et al., 2020b). Furthermore, the experiments considered 
unidirectional irregular waves, which removes uncertainty about 
directional effects. In section 2, the high spatial and temporal resolution 
experimental dataset collected during GLOBEX is briefly presented. 
Section 3 introduces the cross-spectral and bispectral analysis tech-
niques and describes the weakly non-linear numerical approach 
employed here for predicting the cross-shore evolution of energy 
spectra. In Section 4, the cross-spectral analysis is performed on the 
surface elevation data from adjacent wave gauges to extract dominant 
wavenumber spectra κ(f), phase velocity spectra c(f) and their evolution 
across the entire wave flume. From this analysis, we identify four re-
gimes of propagation ranging from a linear up to a surf zone situation, 
where wavenumber and phase velocity spectra display specific charac-
teristics. In section 5, the bispectral analysis is used to quantify 
non-linear energy transfers towards harmonics, which play a funda-
mental role in the patterns observed at high frequencies in wavenumber 
and phase velocity spectra. The dominant wavenumber is shown to vary 
with the amount of forced energy at a particular frequency, with larger 
deviations from the linear wave dispersion expected for higher 
forced-to-free energy ratios. Finally, section 6 briefly discusses the re-
sults and provides the concluding remarks of this study. 

2. Experimental dataset 

The Gently sLOping Beach Experiment (GLOBEX) project was per-
formed in a 110-m-long, 1-m-wide, and 1.2-m-high wave flume, located 
in the Scheldegoot in Delft, the Netherlands (Ruessink et al., 2013). The 
experiments aimed at collecting high-resolution data of free surface 
elevation and current velocities in order to study infragravity wave 
dynamics and short-wave propagation and non-linearities (e.g., see de 
Bakker et al., 2015; Tissier et al., 2015; Rocha et al., 2017). A combi-
nation of 21 capacitance and resistance-type of wave gauges sampling at 
128 Hz were deployed along the low-sloping 1:80 concrete beach to 
measure the free surface elevation (see Fig. 1). 18 of these wave gauges 
were mounted on movable trolleys, which were repositioned after the 
repetition of each wave test in order to reach the desired spatial reso-
lution (10 repetitions per test). Similarly, five electromagnetic current 
meters were fixed to the trolleys and allowed the collection of current 
velocities at numerous locations across the wave flume (the data from 
these current meters is not used here). This spatial resolution makes the 
GLOBEX dataset unique as it allows to characterize and quantify 
non-linearities at various stages of the waves propagation (from a linear 
situation up to the surf zone). The wave paddle steering signals included 
second-order wave generation and the paddle was equipped with an 
Active Reflection Compensation system to absorb long waves radiated 

Fig. 1. Elevation z of the 1:80 concrete beach against the cross-shore distance x in the Scheldegoot flume during the GLOBEX project. The wave paddle is located at 
x = 0 m. The grey ‘+’ symbols show the position of the wave gauges across the wave flume. 
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from the beach. The water depth at the wave paddle was 0.85 m for all 
tests. 

The present study uses free surface elevation measurements from the 
70-min-long irregular wave tests of the A series (A1, A2, A3, see Rues-
sink et al., 2013). During this series of tests, JONSWAP spectra were 
imposed, covering moderate to energetic and broad to narrow-banded 
sea wave conditions, see Table 1. The wave conditions along the 
flume for these runs are displayed in Fig. 2, through a range of second 
and third-order wave parameters. Fig. 2a first shows the root-mean 
square wave height Hrms computed as (8 ζ2)

1/2 where ζ is the free sur-
face elevation and the overbar denotes the time-averaged operator. Note 
that ζ was high-pass filtered using a cutoff frequency at 0.6 fp, with fp the 
peak wave frequency, so that the bulk parameters shown in Fig. 2 are 

computed on the short-wave frequency band only. As conditions were 
more energetic during A2, the mean breaking point was located farther 
seaward than during A1 and A3. In the inner surf zone, waves were 
found to be depth-limited during all runs, which is also evidenced by the 
near-constant values reached by the non-linearity parameter ε = Hrms/
̅̅̅
2

√
h in this region of the wave flume (ε ∼ 0.3, see Fig. 2b), where h is the 

mean water depth. Fig. 2c and d shows the short-wave skewness Sk and 
asymmetry As computed respectively as 

Sk =
(ζ − ζ)3

(ζ − ζ)2 3/2 . (1)  

As = −
(H (ζ − ζ))3

(ζ − ζ)2 3/2 , (2)  

where H { ⋅} is the Hilbert transform. Sk and As are measures of wave 
asymmetry along the horizontal and vertical axes respectively and also 
inform on the energy content at high harmonics (Elgar, 1987; Martins 
et al., 2020b; de Wit et al., 2020). For the same imposed wave height, A1 
and A3 differed in the shoaling region, with a more intense shoaling 
process noted during A3 (Fig. 2a and 2c), as expected for longer waves. 
This is also explained by the narrower spectrum imposed during A3, 
which favoured non-linear energy transfers to higher harmonics as 

Table 1 
Significant wave height (Hs) and peak wave frequency (fp) for the three tests 
considered in this study. The peak enhancement γ of the JONSWAP spectra 
characterizes its spectral bandwidth. A value of 3.3 corresponds to broad spectra 
while a narrow-band spectra is imposed with γ = 20.

Test Hs [m]  fp [Hz]  γ 

A1 0.10 0.633 3.3 
A2 0.20 0.444 3.3 
A3 0.10 0.444 20  

Fig. 2. Second and third-order short-wave parameters during tests A1, A2 and A3: a) root-mean square wave height Hrms computed as (8 ζ2)
1/2; b) corresponding 

wave amplitude to water depth ratio ε = Hrms/
̅̅̅
2

√
h; c) wave skewness Sk; d) wave asymmetry As and e) Ursell number Ur computed as ε/μ. Note that these are short- 

wave parameters, computed using the high-pass filtered surface elevation signal (frequency cutoff at 0.6 fp). 
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compared to A1 (de Bakker et al., 2015). Short waves remain (vertically) 
symmetric (As ∼ 0) until the location where the largest waves start 
breaking. Short-wave asymmetry is maximal in the inner surf zone, 
where short waves pitch forward and display the commonly observed 
sawtooth-like shape. Finally, the Ursell number Ur is shown in Fig. 2e. 
Here, Ur is defined as the ratio between the non-linearity ε and disper-
sion μ = (κph)2 parameters, where κp is the peak wavenumber given by 
the linear wave dispersion relation. 

3. Methods 

3.1. Computation of wavenumber and phase velocity spectra 

Cross-spectral analysis between adjacent wave gauges is used to 
compute the dominant wavenumber and phase velocity spectra across 
the wave flume. As this approach provides phase differences (or delay) 
between two signals in the frequency domain (e.g., see Ochi, 1998), it 
has been successfully used in the past to study, in both the laboratory 
and field, the dispersive properties of ocean waves propagating in deep 
(e.g., see Ramamonjiarisoa and Coantic, 1976; Mitsuyasu et al., 1979) 
and intermediate to shallow waters (Thornton and Guza, 1982; Freilich 
et al., 1984; Elgar and Guza, 1985b). 

Let Cx1 , x2 denote the cross-spectrum computed with surface eleva-
tion timeseries from two gauges located at positions x1 and x2. The 
coherence coh(f) and phase φ(f) spectra computed between x1 and x2 
are then respectively given by 

cohx1 , x2 (f)=
[Cx1 , x2 (f )C∗

x1 , x2
(f )

Cx1 , x1 (f )Cx2 , x2 (f )

]1/2

(3)  

φx1 , x2
(f )= arctan

[
Im

{
Cx1 , x2 (f )

}

Re
{

Cx1 , x2 (f )
}

]

, (4)  

where Re{ ⋅} and Im{ ⋅} are the real and imaginary parts of the cross- 
spectra respectively and ∗ denotes the complex conjugate. As shown in 
Fig. 3a with an example of cross-spectral analysis performed during A2 
in the deepest region of the flume (x ∼ 10 m), the phase spectra φ(f)
provides a phase lag per frequency that is bounded between -π/ 2 and π/

2. The time delay (in sec) per frequency is obtained from the unwrapped 
phase φunw which, in the case of progressive waves propagating in one 
dimension, is easily retrieved from the phase jumps (e.g., see Fig. 3a). 
The wavenumber κ(f) and (cross-shore) phase velocity c(f) spectra are 
then readily computed as 

κ(f )=φunw
x1 , x2

(f )
/

Δx (5)  

c(f )= 2πf Δx
/

φunw
x1 , x2

(f ), (6)  

where Δx is the spacing between the two wave gauges. As in Herbers 
et al. (2002), κ refers to the single-valued wavenumber modulus, 
representative of a mixed sea-state composed of both free and forced 
components (i.e., for a given angular frequency ω = 2πf , energy in the 
(ω, k) space is spread across several wavenumbers k). In practice, κ and c 
provide estimates at x = (x1 +x2)/2 of the dominant wavenumber (in an 
energy-averaged sense) and the corresponding propagation speed 
respectively, as shown by the analysis on synthetic data in Appendix A. 
This aspect is also discussed in Section 5. Cross-spectra were computed 
using Welch’s method and 63 Hann-windowed records of 128 s, which 
were overlapping by 50%. This resulted in each spectral estimate having 
approximately 70 equivalent degrees of freedom and a spectral resolu-
tion of 0.008 Hz. 

As observed by many authors in the past, the coherence spectra at 
high harmonics were found to be quite sensitive to the spacing between 
the two adjacent wave gauges. This is especially true in the deepest parts 
of the wave flume, where energy levels at these frequencies are quite low 
and the spacing between the two gauges can represent several wave-
lengths. An example is provided in Fig. 3b, which shows the coherence 
spectra computed over the flat section of the flume during A2 with Δx =

0.93Lp, Lp being the peak wavelength given by linear wave theory. The 
coherence remains very high (coh > 0.95) at frequencies between 0.6 
and 1.5 fp, which explain over 86% of the short-wave variance at this 
location. However, valleys in the coherence can be observed around 2.5 
fp for this particular spacing configuration and the coherence weakens 
quickly after 2.8 fp (Fig. 3b). Since using a different spacing slightly 
shifts the coherence ‘valleys’, several combinations of wave gauges and 

Fig. 3. Phase (a), coherence-squared (b), dimensionless wavenumber (c) and phase velocity (d) spectra computed at x = 10.65 m for case A2. The spacing between 
the adjacent gauges is Δx = 0.93Lp, with Lp the peak wavelength given by the linear wave dispersion relation (Eq. (14)). The phase velocity spectrum is normalised 
by cL(fp), the phase velocity predicted by linear wave theory at the peak frequency. The red dashed lines in panels a, c and d correspond to the values given by the 
linear wave dispersion relation. The separation between infragravity and short wave frequencies (0.6 fp) is shown as dashed black line. In panel b, the grey dashed 
line corresponds to the coherence-squared threshold used for computing ensemble average spectral estimated of κ and c. In panel d, the orange line corresponds to the 
short-wave envelop propagation speed. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 

K. Martins et al.                                                                                                                                                                                                                                 



Coastal Engineering 167 (2021) 103917

5

spacing were used to obtain spectral estimates at a single location with 
coherence higher than typically 0.5 at all frequencies (similar idea as 
that used by Herbers et al., 2002, with their field observations). After the 
removal of data associated with a coherence inferior to 0.5 (coh2≳0.25 
in Fig. 3b), spectral estimates were ensemble-averaged. When 
non-linearities are strong, such as near the breaking point or in the surf 
zone, the coherence remains high up to 4–5 fp, as long as Δx is taken 
sufficiently small (typically 0.2–0.4 Lp in those regions). In such cases 
the ensemble-averaging procedure is not really necessary but it was used 
all along the flume for consistency in the analysis. 

3.2. Computation of bispectra 

The power bispectrum of discretely sampled data corresponds to a 
representation in the frequency domain of its third-order cumulant or 
moment. As it provides information on the strength of the phase 
coupling between triads of frequencies f1, f2 and f1 + f2, the bispectrum 
is a useful and powerful tool for studying non-linear phenomena in 
ocean waves (Hasselmann et al., 1963; Elgar and Guza, 1985a). Here, we 
use the definition given by Kim and Powers (1979): 

B( f1, f2)=E [A(f1) A(f2) A∗(f1 + f2)], (7)  

where A(f) are the complex Fourier coefficients and E is an expected, or 
ensemble-average, value. Similar to the cross-spectrum phase, the 
biphase is obtained from the bispectrum as 

β( f1, f2)= arctan
[

Im{B( f1, f2)}

Re{B( f1, f2)}

]

. (8) 

It is particularly insightful to recast the biphase as a function of the 
Fourier coefficients phases θ(f): β( f1, f2) = θ(f1) + θ(f2) − θ(f1 +f2) (e.g., 
see Kim et al., 1980; Elgar and Guza, 1985a). The amount of energy 
transfer between near-resonant components depends on their relative 
phases, whose information is contained in the biphase (Hasselmann 
et al., 1963; Kim et al., 1980). 

Bispectra were computed on the free surface elevation signals down- 
sampled to 16 Hz by averaging estimates from 126 Hann-windowed 
records of 128 s, which were overlapping by 75%. Statistical stability 
was increased by merging estimates over three frequencies (e.g., see 
Elgar and Guza, 1985a) yielding approximately 205 equivalent degrees 
of freedom, and a spectral resolution of 0.023 Hz. A validation of the 
bispectra computation is provided in Appendix B, which compares 
surface elevation third-order moments computed across the whole wave 
flume via bispectral (Elgar and Guza, 1985a; Elgar, 1987) and statistical 
definitions (Eqs. (1) and (2)). 

3.3. Non-linear energy transfers 

In the present study, we are principally interested in the growth of 
high harmonics due to non-linear energy exchanges between triads and 
the effect of these forced components on the dispersive properties of 
shoaling waves. To quantify the relative importance of forced energy at 
high harmonics, we represent these exchanges with a Boussinesq 
approximation in a spectral energy balance equation, following a similar 
approach as developed in Herbers et al. (2000). Such Boussinesq 
approximation has already demonstrated its potential to predict, in a 
very computationally efficient manner, the cross-shore evolution of 
spectral components in the nearshore (Herbers and Burton, 1997; 
Norheim et al., 1998; Herbers et al., 2000; de Bakker et al., 2015; Padilla 
and Alsina, 2017). Note that the Boussinesq approximation (detailed 
below) restricts the present modelling approach to A2 and A3 since 
conditions during A1 are too dispersive. 

For unidirectional waves propagating shoreward on an alongshore- 
uniform beach and assuming a weak reflection at the shoreline, a bal-
ance between the cross-shore gradient of the energy flux spectrum F(f), 
a source term Snl(f) quantifying the non-linear energy exchanges be-

tween triads, and a dissipation term Sdis(f) reads (e.g., Eq. (1) of Herbers 
et al., 2000) 

∂F(f )
∂x

= Snl(f ) + Sdis(f ). (9) 

Breaking processes are ignored so that the dissipation term Sdis re-
duces to the energy losses by bottom friction Sfr, here simply modelled 
after Thornton and Guza (1983): 

Sfr(f )= ρcf
1

6π

(
2πf

sinh|k|h
H
)3

, (10)  

where h is the mean water depth and |k| is the wavenumber modulus 
obtained from the linear wave dispersion relation (hereafter denoted κL, 
see Section 4). The friction coefficient cf was set to 0.0055 after cali-
bration in the deepest section of the wave flume. 

Assuming that the wave field is weakly non-linear, weakly disper-
sive, and that these effects are of similar order (Ur ∼ O(1), i.e. Boussi-
nesq regime), the non-linear source term Snl can be approximated with 
an integral of the bispectrum as follows (Herbers and Burton, 1997; 
Norheim et al., 1998; Herbers et al., 2000): 

Snl(f )=
3πf
h

∫ ∞

− ∞
Im{B∗(f

′

, f − f ′

)}df
′

. (11) 

Eq. (11) differs from the expression of Herbers et al. (2000) (their Eq. 
(2)) in several points: the conjugate of B is taken in order to be consistent 
with their definition of the bispectrum (conjugate of the present defi-
nition); Snl is here defined as a function of f (not ω) and the definition 
with the full integral is kept (symmetric properties of the bispectrum are 
not used to decompose it). Previous studies proposed evolution equa-
tions for the energy and bispectra (e.g., the stochastic model of Herbers 
and Burton, 1997) to simulate the propagation and transformation of 
directional seas. As in Herbers et al. (2000), we take advantage of the 
spatial resolution of the present dataset and directly evaluate Snl and Sfr 

at each available cross-shore location using trapezoidal rules for 
approximating the integrals. Besides removing uncertainties associated 
with its cross-shore prediction, using measured bispectra has for 
advantage to relax the limitations of the stochastic Boussinesq model of 
Herbers and Burton (1997) (such as the distance over which bispectra 
can be propagated, see Freilich et al., 1984). In order to be consistent 
with the original equation derived by Herbers and Burton (1997, their 
Eq. 22a), the energy in Eq. (9) is assumed to propagate at the shallow 
water wave speed so that F(f) = ρgE(f)

̅̅̅̅̅
gh

√
, with ρ the water density 

and g the acceleration of gravity. After these considerations, Eq. (9) 
simplifies to 

∂E(f )
̅̅̅̅̅̅̅̅̅̅̅
gh(x)

√

∂x
=

1
ρg

(
Snl(f )+ Sfr(f )

)
. (12) 

Integrating this equation (in space) between the location of the first 
gauge x0 and any location x1 prior to the mean breaking point location 
yields the following expression for the energy density spectrum at x1 

E(x1, f): 

E(x1, f )=E(x0, f )
̅̅̅̅̅̅̅̅̅̅̅̅̅
gh(x0)

√

̅̅̅̅̅̅̅̅̅̅̅̅̅
gh(x1)

√ +
1

ρg
̅̅̅̅̅̅̅̅̅̅̅̅̅
gh(x1)

√

∫ x1

x0

(
Snl + Sfr

)
dx. (13) 

Finally, the ratio 
∫ x1

x0
Snldx/F(x1), which represents the energy flux 

received (or lost) via non-linear coupling between x0 and x1 over the 
total energy flux at x1, is used in the following as an approximation of 
the relative amount of forced energy at x1. Outside the surf zone, where 
dissipative processes dominate, this estimation was found to be more 
reliable than the bicoherence, which is often used as a proxy for such an 
estimation but lacks general consensus upon its definition, see Appendix 
C for more details. 
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4. Wavenumber and phase velocity spectra of shoaling and surf 
zone waves 

In this section, we present and describe the main results from the 
cross-spectral and bispectral analyses. The computation of dominant 
wavenumber κ and phase velocity c spectra for varying degrees of non- 
linearity resulted in the identification of four different regimes of 
propagation, which broadly consist of: a linear regime (stage I), a 
shoaling regime relatively far from the mean breaking point (stage II), a 
shoaling regime near the mean breaking point (stage III) and a surf zone 
regime (stage IV). The Ursell number Ur (Fig. 2e) was used as a reference 
to define these regimes of propagation, which are characterized by 
similar patterns - between all wave tests considered here - in wave-
number and phase velocity spectra. For all stages, κ(f) and c(f) spectra 

are compared to predictions from the linear wave dispersion relation, 
which links the spatial and temporal information of a linear wave field: 

ω2 = g|k|tanh(|k|h). (14) 

In the following, the subscript ‘L’ is used throughout the manuscript 
to refer to κ or c values that are solution to Eq. (14) (i.e. κL and cL =

ω/κL). For conciseness, the propagation as linear waves is discussed 
using the results from the most non-linear case (A2), already shown in 
Fig. 3. The other stages of propagation focus on the differences between 
broad and narrow spectra, i.e. between A2 and A3. Note that κ and c 
characteristics during A1 are very similar to those obtained during A2 
for similar Ur numbers. Finally, given the relatively high spatial reso-
lution, frequency-wavenumber power spectra P(ω, k) (e.g., see Redor 
et al., 2019) were computed using 2D Fourier analysis at four different 

Fig. 4. Frequency-wavenumber surface elevation power spectra P(ω, k) computed for A2 (left) and A3 (right) at the four stages of propagation described in the paper 
(I: panels a–b; II: panels c–d; III: panels e–f and IV: panels g–h). For A2, these power spectra were computed at I: x = 9.8 ± 2.8 m; II: x = 38.9 ± 3.6 m; III: x = 54.5±
3.5 m and IV: x = 76 ± 2.4 m. For A3, the cross-shore locations were I: x = 9.8 ± 2.8 m; II: x = 53.4 ± 2.4 m; III: x = 62.3 ± 3.5 m and IV: x = 77± 2.4 m. Each black 
contour line correspond to a power of 10. The separation between infragravity and short-wave frequencies (0.6 fp) is shown as the dashed black line. In all panels, the 
red curves correspond to the linear wave dispersion relation. In panels a–d, the dashed grey curves correspond to the dispersion relation for the second harmonic, and 
was computed based on the assumption that it travels at a similar speed as its principal component. In panels e–f, the grey curve corresponds to the shallow water 
wave dispersion relation (c =

̅̅̅̅̅
gh

√
) while the dashed green line in panels g–h refer to the modified one (c =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
gh(1 + ε)

√
). (For interpretation of the references to 

colour in this figure legend, the reader is referred to the Web version of this article.) 
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cross-shore sections corresponding to stages I, II, III and IV, by averaging 
over 63 Hann-windowed time-records of 128 s overlapping by 50% 
(Fig. 4). The chosen length of the cross-shore section (width of the data 
window for computing the 2D Fast-Fourier transform) is a best 
compromise for reaching a proper resolution in wavenumber k and still 
assuming little change in wave type over the section. The 2D Fourier 
analysis shown in Fig. 4 provides a qualitative information on energy 
spreading in (ω,k) space and is particularly useful to illustrate what the 
single-valued dominant wavenumber represents in a mixed sea-state. 
Fig. 4 will be used in the present and following sections to analyse the 
link between non-linear energy exchanges and the dispersive properties 

of the wave field. 

4.1. Propagation as free, linear waves (I) 

Fig. 3 shows for the most non-linear case A2 an almost perfect match 
for f > 0.6 fp between the measured wave phases, wavenumbers and 
phase velocity spectral estimates with the predictions from the linear 
wave dispersion relation (Fig. 3a, 3c and 3d respectively). The decrease 
of coherence at high frequencies (Fig. 3b) can be explained by the 
relatively low energy content in the spectrum tail (> 86% of the vari-
ance is contained between 0.6 fp and 1.5 fp during A2). It also provides 

Fig. 5. From top to bottom: surface elevation energy density spectra, dimensionless wavenumber spectra, phase velocity spectra normalised by cL(fp) and bispectra 
computed at Ur ∼ 0.3 (stage II) for wave tests A2 (left panels) and A3 (right panels). The cross-shore location corresponding to this stage is indicated in panels a and b 
(cf Fig. 2e). The wavenumber and phase velocity spectra were computed with five spacing configurations: each point corresponds to the ensemble-averaged value 
and the error bars correspond to the standard deviation. For readability, only one on three data points across frequencies are shown. Red lines in panels c–f 
correspond to values given by the linear wave dispersion relation. The separation between infragravity and short-wave frequencies (0.6 fp) is shown as the dashed 
black line. In panels c–d, the red dashed line corresponds to κ(f) = 2πf/c(fp). In panels e–f, the orange line corresponds to the short-wave envelop propagation speed 
denoted cenv. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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an explanation for the slight deviations of measured κ and c from pre-
dictions by the linear wave dispersion relation (Fig. 3c and d). However, 
the 2D Fourier analysis performed over the flat section of the flume 
(Fig. 4a and b) reveals the presence of energy along the dispersion 
relation for bound high-frequency components (e.g., see at f > 2.5fp for 
A2 and around 2fp for A3), suggesting that energy transfers towards high 
harmonics already occur in this region. Nonetheless, the energy is 
mainly distributed along the linear dispersion relation, which indicates 
that short-wave components were mostly propagating as free waves in 
the deepest regions of the wave flume (Ur ∼ O(0.01 − 0.1)). 

Data points in the infragravity frequency band (f < 0.6 fp) corre-
spond to wave components generated via difference interactions and 
that are bound to short-wave groups. As such, bound infragravity waves 
propagate at a speed close to the corresponding group velocity, which is 
lower than their intrinsic phase velocity. This is confirmed in Fig. 3d 
with a good correspondence between measured c values with short-wave 

groups propagation speed (cenv, shown as the orange line), estimated via 
cross-spectral analysis of short-wave groups envelop. The latter was 
computed following Janssen et al. (2003), as the absolute value of the 
analytical signal of ζ: |ζ + iH {ζ}| (no low-pass filtering is needed for the 
present application). Note that the discrepancies observed at f ∈ [0.3 fp;
0.6 fp] can be explained by the lower levels of energy at these fre-
quencies: E(f) ∼ O(10− 5) m2/Hz as opposed to E(f) ∼ O(10− 4) m2/Hz 
around f = 0.1 fp. 

4.2. Shoaling of weakly non-linear waves (II) 

At higher Ursell number (Ur ∼ 0.3), wave non-linearities become 
significant and non-linear energy transfers to high harmonics promote 
the dominance of bound high harmonics (Fig. 4c and d). This is observed 
in the considerable deviation of dominant wavenumbers and phase ve-
locity spectral estimates from the predictions of the linear dispersion 

Fig. 6. Similar to Fig. 5, but with Ur ∼ 0.7 (stage III).  
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relation for f > 1.5 fp (see Fig. 5c–f). During A3, the phase velocity 
values at 2fp and 3fp are equal to that of the peak frequency (difference <
1%, c(fp) = 1.95 m/s), while during A2 they lie between the value at fp 

and the predictions of the linear dispersion relation (∼ 7% difference 
from c(fp) = 2.18 m/s). At the second harmonic 2fp, most of the non- 
linear energy transfers occur via sum interactions of components 
around fp (self-self interactions) as evidenced by the positive imaginary 
part of B∗ around (fp, fp), see Fig. 5g and 5h and for tests A2 and A3 
respectively. Although less evident in the bispectra, the normalised 
bispectra shown in Fig. C1 indicate that strong coupling involving fp and 
higher harmonics also exist in the shoaling region. These are particularly 
strong around (2fp, fp) for A3, which explains the significant growth of 
the third harmonic 3fp observed for that test (Fig. 5b). Consistent with 
field observations (e.g. Elgar and Guza, 1985a; Norheim et al., 1998), 
relatively strong non-linear exchanges by sum interactions are observed 

during A2, despite the broader spectrum conditions (note the scale dif-
ference between the A2 and A3 cases). Short-wave frequencies distant 
from fp (e.g. ∼ 1.5fp) show a strong coupling with fp, which is the 
consequence of a broader spectrum for A2 compared to A3. A striking 
result in this regime of propagation is the fact that, despite 
non-linearities becoming important (ε ∼ 0.12 − 0.2, Sk ∼ 1), the prin-
cipal wave components follow the linear wave dispersion relation. The 
spatial structure of the wave field for f ∈ [0.6 fp;1.5 fp] is therefore 
well-described by the linear wave theory (Fig. 5c and d and ). However, 
this is not the case for f > 1.5 fp, where the overestimation of wave-
numbers by the linear dispersion relation increases with f (up to a factor 
2.5 at 3.5 fp). As the biphase at both (fp, fp) and (fp, 2fp) are close to 0, 
this regime of propagation is consistent with Stokes-like non-linearities 
(e.g., see Elgar and Guza, 1985a). 

In the infragravity band, wave components are still bound to short- 

Fig. 7. Similar to Fig. 5, but with Ur ∼ 3.2 (stage IV). Additionally, the green dashed lines in panels e) and f) correspond to the modified shallow water dispersion 
relation c =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
gh(1 + ε)

√
. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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wave groups as indicated by the good match between spectral estimates 
of phase velocity and the propagation speed of short-wave groups. En-
ergy transfers towards the infragravity band concentrate at frequencies 
around 0.1–0.2fp (Fig. 5a-b) and principally originate from strong dif-
ference interactions which transfer energy from fp towards that infra-
gravity frequency and components at frequency slightly lower than fp 

(see the negative imaginary part of B∗ along the fp anti-diagonal, Fig. 5g- 
h). 

4.3. Shoaling of non-linear waves in the vicinity of the breaking point (III) 

The next regime analysed in Fig. 6 corresponds to non-linear waves 
approaching the mean breaking point location (Ur ∼ 0.7). At this Ursell 
number, wavenumber and phase velocity spectra become less 
frequency-dependent at high frequencies. This can be explained by the 
fact that most of the energy at those frequencies is bound to primary 
components in the range [0.6 fp;1.5 fp], and that c values display little 
variations at these frequencies (c/cL(fp) is within 5% of c(fp)/ cL(fp)). As 
a result, wavenumbers at high frequencies are relatively well described 
by a simple dispersion relation given by κ(f) = 2πf/c(fp) (Fig. 6c-d). 
Note that at these depths (κph ∼ 0.57 and 0.47 for A2 and A3 respec-
tively), this approximately corresponds to the shallow water dispersion 
relation κsw(f) = 2πf/

̅̅̅̅̅
gh

√
, which explains why most of the energy is 

spread around this dispersion relation in Fig. 4e-f. Non-linear amplitude 
effects become increasingly important (ε = 0.25 and Sk = 1.4 − 1.5) 
and deviations between c(fp) and predictions by the linear dispersion 
relation are observed (Fig. 6e-f). As noted and observed by Herbers et al. 
(2002), this is the result of non-linear interactions, which alter the 
wavenumber of all three wave components involved. Indeed, bound 
high harmonics contribute to an increase in skewness and height of 
principal wave crests, which has for effect to enhance their propagation 
speed. Variations in the strength of non-linear interactions thus explain 

the varying magnitude of the deviations of c(fp) from predictions by the 
linear dispersion relation as observed around breaking in both field and 
laboratory settings (Thornton and Guza, 1982; Herbers et al., 2002; 
Tissier et al., 2011). For this range of Ursell number, overestimations of κ 
by the linear dispersion relation remain close to a factor 2 at f = 3.5 fp. 

In these regions of the wave flume, surface elevation bispectra are 
still dominated by real values (note the x2 in imaginary values, Fig. 6g- 
h), typical of (horizontally) skewed and nearly symmetric waves 
(As ∼ 0, see Fig. 2c and d and also Masuda and Kuo, 1981; Elgar and 
Guza, 1985a). The strong coupling between first and second harmonics, 
which for instance explains the energy peak at 3fp in A3 (Fig. 6b) is here 
evident in the imaginary part of the bispectra at (fp2fp) (see also the 
bicoherence in Fig. C1). Infragravity frequencies between 0.1 and 0.2fp 

keep receiving energy via relatively strong difference interactions. As a 
consequence, prior to short-wave breaking infragravity waves are still 
bound to short-wave groups during both tests (see Fig. 6e and f, and also 
de Bakker et al., 2015). 

4.4. Surf zone waves (IV) 

In the surf zone (Ur taken at 3.2), wavenumber and phase velocity 
spectra are frequency-independent (Fig. 7e-f). The large differences 
observed between the measured phase velocity at peak frequency and 
that predicted with the linear dispersion relation demonstrate the 
dominance of amplitude effects over dispersive ones (Herbers et al., 
2002). All components travel at a speed slightly larger than that of 
shallow water waves (∼ 10 − 20% depending on the wave test), which is 
consistent with many past field and laboratory observations of wave 
dispersion in the surf zone (Inman et al., 1971; Svendsen et al., 1978; 
Stive, 1980; Thornton and Guza, 1982, and many others). For both A2 
and A3 tests, the relation c =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
gh(1 + ε)

√
is shown in Fig. 7e-f (see also 

Fig. 4g-h, for the corresponding frequency-wavenumber surface 

Fig. 8. Comparison between observed and predicted (Eq. (13)) wave amplitudes at fp, 2fp and 3fp (afp , a2fp and a3fp respectively). The cross-shore locations cor-
responding to the regimes of propagation discussed in section 4 are indicated by the vertical dashed lines for both wave tests. Since the present modelling approach 
neglects wave breaking-induced energy dissipation, modelled amplitudes are shown only until the approximate mean breaking point location (slightly after stage III). 
The amplitude growth predicted with Green’s law is also shown. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web 
version of this article.) 
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elevation power spectra). This formula is asymptotic in shallow water to 
the non-linear dispersion relation given by Hedges (1976) with the 
adjustment of Booij (1981) (see also Catalán and Haller, 2008, for an 
assessment of these relations for depth-inversion applications). In the 
inner surf zone, where ε ∼ 0.3 during all tests (Fig. 2b), this yields c ∼

1.14
̅̅̅̅̅
gh

√
, a relation also found in the field by Tissier et al. (2011). This 

relation appears as an upper bound, in an average sense (e.g. over several 
wave groups), for the propagation speed of wave components in the 
inner surf zone. 

In the short-wave frequency range, bispectra display relatively weak 
and nearly equal real and imaginary parts, characteristics of asymmetric 
(pitched forward) broken waves, with biphases approaching -π/ 2 (Elgar 
and Guza, 1985a; Doering and Bowen, 1987): for instance during A3, 
β(fp, fp) ∼ β(fp, 2fp) ∼ − π/3. Since these values were still close to 
0 during stage III, this indicates that bound high-harmonic components 
(here only shown for 2fp and 3fp) slowly drift out of phase from the 
principal component starting from the mean breaking point location. 
This is in contrast with short-wave group-forced bound infragravity 
waves that slowly drift out of phase with the short-wave envelope in the 
shoaling region (e.g., see Elgar and Guza, 1985a). Since this process 
occurs over long distances, the differences in phase velocities between 
fp, 2fp and 3fp are not sufficiently large to be observed in the present 
dataset. Finally, in the inner surf zone, intense and complex energy 
transfers occur within the infragravity band and also between infra-
gravity and short-wave components. For more information on these 
processes during the GLOBEX experiments, the reader is referred to the 
study of de Bakker et al. (2015). 

5. Role of non-linear energy transfers on κ and c 

Most differences observed in wavenumber and phase velocity spectra 
between broad and narrow-banded wave conditions concentrate in the 
shoaling region (stages II and III). In stage II, c values at 2fp and 3fp 
during A2 lie between c(fp) and the values predicted by linear wave 
theory while c(fp), c(2fp) and c(3fp) are all equal during A3 (Fig. 5e-f). As 
these differences between broad versus narrow-band spectra are likely 
explained by the relative importance of forced energy at those fre-
quencies (see the cross-spectral analysis performed on synthetic data 
and discussed in Appendix A and also Herbers and Guza, 1992; Herbers 
et al., 2000), we analyse non-linear energy transfers to 2fp and 3fp in 
more details here. 

Wave amplitudes at fp, 2fp and 3fp (afp , a2fp and a3fp respectively) 
computed from energy spectra modelled with Eq. (13) are compared 
against observations in Fig. 8. Overall, the Boussinesq approach of 
Herbers and Burton (1997) for the non-linear energy transfers between 
triads accurately predicts the growth of second and third harmonics 
across the shoaling zone for both broad and narrow-band wave tests. The 

cross-shore evolution of afp , a2fp and a3fp are very well described up to the 
mean breaking point, with mean absolute percentage errors (MAPE) 
lower than 5% and 13% for a2fp and a3fp respectively. With respect to the 
amount of (free) energy imposed at the paddle, the narrow-banded 
conditions during A3 promote more efficient energy transfers, with 
growths of a2fp and a3fp by a factor 3 and 10 respectively, while these 
factors are only between 1.5 and 2 during A2. 

A closer look at the cross-shore evolution of the source terms (Fig. 9) 
shows that friction effects are negligible at high frequencies but not 
around the peak frequency where the energy dissipated through bottom 
friction is of similar order than the energy lost via non-linear coupling. 
During A3 (Fig. 9b), the steady increase of Snl(2fp) indicates a gradual 
growth of a2fp in the shoaling region (see also Fig. 8b). This growth is 
most intense right before the mean breaking point location, around the 
location corresponding to stage III. Computations of the ratio 

∫ x1
x0

Snldx/
F(x1) at the location x1 corresponding to stage II (resp. III) suggest that 
approximately 70% (resp. 80%) of the energy at 2fp is forced during A3. 
At 3fp, these estimations range between 90% and 100% during stage II 
and III respectively. Although the resolution in wavenumbers does not 
allow a clear separation of forced and free energy at 2fp, the frequency- 
wavenumber power spectra shown in Fig. 4d (II) and 4f (III) corroborate 
these numbers and clearly indicate that most of the energy at 3fp is 
forced. In contrast, non-linear energy exchanges between triads display 
a more complex picture for the broader conditions of A2. Snl(2fp) os-
cillates around 0 so that when spatially integrated, non-linear energy 
exchanges explain only 20% (30%) and 30% (50%) of the total energy at 
2fp and 3fp respectively during stage II (III). These numbers are quite 
consistent with the bicoherence values shown in Appendix C. For both 
wave tests, b2 values are found to vary little between stage II and III: for 
A2, b2(fp, fp) ∼ 0.3 and b2(fp, 2fp) ∼ 0.2, while these values oscillate 
between 0.55 and 0.65 for A3. b2(fp, fp) and b2(fp,2fp) can be considered 
as crude estimates of the relative amount of forced energy at 2fp and 3fp 

respectively (Kim and Powers, 1979). 
The effect of varying relative amounts of forced energy not only 

explain the differences observed in κ and c spectra at high frequencies 
between A2 and A3 but also their variation across frequencies. During 
A3 for instance, non-linear energy transfers in the short-wave frequency 
band were predominantly towards 2fp and 3fp (Figs. 5h and 6h). At these 
harmonics, energy is predominantly forced (> 70% around 2fp and >
90% around 3fp), thus, the dominant κ and corresponding c values are 
directly related to the values at the peak frequency. In contrast, fre-
quencies located in valleys between harmonics (i.e. 1.5fp and 2.5fp) 
receive very little energy through the coupling of triads. This eventually 
leads to the patterns in c observed in Fig. 5f, which are very similar to 
those obtained by Crawford et al. (1981) with their model for modulated 
wave trains. During A2, lower relative amounts of forced energy are 

Fig. 9. Cross-shore variation of the source terms for the non-linear energy exchanges between triads and for the bottom friction, used in Eq. (13). Only values at the 
peak frequency (fp) and the second harmonic (2fp) are shown. The cross-shore locations corresponding to the regimes of propagation discussed in section 4 are 
indicated by the vertical dashed lines for both wave tests. 
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found at high harmonics and dominant wavenumbers lie between κ(fp)
and the intrinsic value at that frequency predicted by the linear 
dispersion relation. Furthermore, due to the broader spectrum condi-
tions, this forced energy is more spread across frequencies, which ex-
plains the weaker variations of κ and c across frequencies as compared to 
A3 (e.g., see Fig. 5e-f). 

The present study considers unidirectional wave fields transforming 
across a mildly sloping beach. A typical field situation where incident 
wave spectra exhibit varying degrees of directional spreading is unclear 
as far as non-linear energy transfers are concerned. According to Bous-
sinesq theory (e.g., Herbers and Burton, 1997), directional spreading has 
only a weak influence on the efficiency of non-linear energy transfers by 
sum interactions, as opposed to difference interactions. For instance, 
these authors predicted a weaker growth of high-harmonic bound wave 
by 10–20% for very large directional spreads (60◦). For more realistic 
spreading angles in the nearshore, de Wit et al. (2020) also recently 
noted variations of approximately 10%. Although small, such a decrease 
in efficiency of non-linear energy transfer towards high harmonics due 
to an increasing directional spreading might lead to lower relative 
amounts of forced energy, subsequently leading to slightly less impor-
tant deviations of κ and c spectral estimates from predictions by the 
linear wave dispersion relation (see also Appendix A). The larger spec-
tral bandwidth generally associated with wave spectra exhibiting a large 
directional spreading is, however, likely to be the principal reason 
explaining weaker couplings between triads and thus weaker relative 
amounts of forced energy at high harmonics. 

6. Discussion and concluding remarks 

Cross-spectral and bispectral analyses were employed on a highly- 
resolved surface elevation dataset to study the dispersive properties of 
waves shoaling and breaking over a mildly sloping beach. For all wave 
tests considered here, four regimes of propagation (I to IV) with specific 
characteristics in dominant wavenumber and phase velocity spectra 
could be defined using a local Ursell number. Stage II (Ur ∼ 0.3) is 
particularly interesting as it simultaneously shows significant non-linear 
effects at high harmonics (typically f > 1.5fp), which are evidenced by 
the large deviations of κ and c spectra from predictions by the linear 
wave dispersion relation, and a clearly linear spatial field for the pri-
mary components. Although less energy was imposed during A3 as 
compared to A2, the narrow-banded conditions promoted relatively 
more important non-linear energy transfers towards high harmonics 
such that phase velocity at 2fp and 3fp were found equal to those at the 
peak frequency. For A2, with a broader spectrum imposed, forced en-
ergy at high frequencies was found in relatively smaller proportion and c 
spectral estimates lied between values at the peak frequency and that 
given by the linear dispersion relation. Closer to the mean breaking 
point (stage III), non-linear energy transfers were found more intense, 
which, together with the less dispersive conditions compared to stage II 
explain that κ and c spectra become less frequency dependent. In the surf 
zone (stage IV), wavenumber and phase velocity spectra essentially 
showed the same characteristics for all tests and a modified shallow 
water dispersion that accounts for non-linearity (c =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
gh(1 + ε)

√
) 

accurately describes the dispersive properties of the wave field. Some of 
the results presented here for shoaling and breaking waves confirm 
previous findings obtained in the field (Thornton and Guza, 1982; Elgar 
and Guza, 1985b; Herbers et al., 2002, among others), yet the unprec-
edented level of accuracy obtained with the GLOBEX dataset allowed to 
highlight and quantify the effect of varying levels of forced energy at 
high harmonics on the dispersive properties of the wave field. 

The detailed analysis of the different regimes of propagation high-
lighted here indirectly provides an assessment of the validity of the 
linear wave dispersion relation at several locations in the nearshore and 
for a range of wave conditions. Two specific regions in the short-wave 
frequency band can be defined: primary components (f ∈ [0.6fp,1.5fp]) 
and high harmonics (f > 1.5fp). For the primary components, deviations 
from the linear wave dispersion relation are due to non-linear amplitude 
effects and concentrate in a region near the mean breaking point and in 
the surf zone. These effects can cause deviations of κ and c from pre-
dictions by the linear wave dispersion of the order of 10–20%. At high 
frequencies, deviations are much larger (O(100%)) and also occur much 
farther seaward. For instance, stage II corresponds to κph = 0.71, 0.70 
and 0.62 for wave tests A1, A2 and A3 respectively. The fact that such 
deviations from predictions by the linear dispersion relation are found in 
κ and c spectra so far seaward of the surf zone for different wave con-
ditions is expected to have strong implications for a wide range of ap-
plications, two of which are briefly discussed below. 

Depth-inversion algorithms such as cBathy (Holman et al., 2013) 
estimate the water depth by applying the linear wave dispersion relation 
to the most coherent pairs of wave frequency and wavenumber extracted 
from timeseries of video images (Stockdon and Holman, 2000; Plant 
et al., 2008). However, due to the working principles of video cameras, 
video data can be more coherent at high harmonics and frequencies 
greater than 1.5 fp are often picked to invert the water depth (Stockdon 
and Holman, 2000; Bergsma and Almar, 2018). In such cases, large 
deviations of the dominant wave phase velocity from linear wave theory 
are expected, which likely explains why Brodie et al. (2018) noted an 
overestimation in the detected phase velocities by 20–100% up to 50 m 
seaward of the mean breaking point location. In the absence of knowl-
edge on the relative amounts of forced energy at high harmonics, pairs of 
frequencies and wavenumbers around the peak frequency should be 
preferred in regions where non-linearities are expected. Similarly, the 
large overestimation of κ by the linear dispersion relation causes the 
widely reported blow-up at high harmonics when correcting sub-surface 
pressure signals for depth attenuation (Bonneton and Lannes, 2017; 
Mouragues et al., 2019; Martins et al., 2020b). The use of a cutoff fre-
quency prevents for instance the accurate description of third-order 
parameters and wave height distributions (e.g., see Martins et al., 
2020a). In shallow water (μ≲0.3), a weakly dispersive formula recently 
developed allows for an accurate correction of the energy levels at high 
harmonics both seaward of (Bonneton et al., 2018; Mouragues et al., 
2019) and in the surf zone (Martins et al., 2020b). However in deeper 
water, a non-linear fully dispersive reconstruction requires knowledge 
on the spatial structure of the wave field, which is generally lacking. 
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Fig. A1. Energy density spectra imposed at a fictive x1 position, with different ratio of forced to free second harmonic amplitude. In the absence of forced com-
ponents, the forcing corresponds to a JONSWAP spectrum with parameter similar to A3 (see Table 1). 

Fig. A2. Wavenumber (a) and phase velocity (b) spectra computed on the synthetic surface elevation timeseries for varying ratio of forced to free second har-
monic amplitudes. 

Fig. B1. Cross-comparison of third-order wave parameters during A3 computed using the statistical (Eqs. (1) and (2), ‘time’ subscript) and the bispectrum (Eq. B.1- 
B.2, ‘B’ subscript) definitions. No separation between infragravity and short wave frequency bands or between incoming and outgoing wave fields was performed for 
this comparison. 
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Appendix A. Sensitivity analysis of the cross-spectral technique to the presence of forced energy 

The situation where both free and forced components exist in a wave field is not entirely clear as far as the cross-spectral analysis is concerned. 
Some studies consider the cross-spectral estimates to be biased towards bound harmonics (e.g., see Lake and Yuen, 1978; Thornton and Guza, 1982), 
arguing that the travelling distance between two gauges is reduced for bound components compared to free ones. This is evidently exacerbated when 
using sub-surface pressure sensors or current meters since bound harmonics are much less attenuated and will dominate the spectrum at some depth. 

To analyse the sensitivity of the cross-spectral analysis to different relative levels of forced energy, some tests are performed here on synthetic data. 
Starting at a position x1, a surface elevation timeseries following a JONSWAP spectrum with similar parameters to the A3 test is generated (Fig. A1). A 
Gaussian-shaped perturbation around 2 fp is added to represent forced harmonics: for any f around 2 fp, the forced harmonic wavenumber is set at 
κforced = 2κ(f /2), so that we have cforced(f) = c(f /2). For the phases of forced harmonics, we choose to impose θforced(f) = θ(f /2) for simplicity. The 
maximum ratio of forced to free harmonic amplitudes a2fp , forced/a2fp , free is set to 6, which corresponds to the maximum ratio of energy E(fp)/ E(2fp) of 
approximately 0.4 that was observed in the flume outside the surf zone. Each wave component is then propagated using its corresponding wave-
number to a second location x2. 

The results from the cross-spectral analysis performed on the synthetic timeseries at x1 and x2 are provided in Fig. A2 as the wavenumber and phase 
speed at 2 fp shown as a function of a2fp , forced/a2fp , free. In the absence of forced components (a2fp , forced/a2fp , free = 0), components around 2 fp follow the 
dispersion relation given by linear wave theory, i.e. κ(2 fp) = κL(2 fp) and c(2 fp) = cL(2fp). Interestingly, when forced and free components are found 
in equal proportion (a2fp , forced/a2fp , free = 1), the relation κ(2 fp) ∼ (κL(2 fp)+2κL(fp))/2 is verified. For higher ratio of forced to free energy, κ(2 fp) and 
c(2 fp) values rapidly converge towards the values corresponding to the peak frequency. Overall, these results suggest that the cross-spectral analysis is 
not biased towards forced components, but simply provides a dominant wavenumber (or averaged in terms of energy) and its corresponding phase 
velocity. 

Appendix B. Validation of the bispectrum computations using the skewness and asymmetry test 

The wave skewness and asymmetry are third-order moments characterizing the wave shape. These parameters are directly related to the energy 
content at high frequencies of the spectra and bispectra (Elgar, 1987). The fact that the statistical (see Eqs. (1) and (2)) and the bispectrum-based 
definitions are theoretically equivalent provide a means to validate the bispectrum’s calculations. 

Due to its symmetry properties, the bispectrum can be uniquely defined in a single octant in the frequency-space (Hasselmann et al., 1963; Elgar 
and Guza, 1985a). If we denote by fN the Nyquist frequency, the octant with positive frequencies is bounded by the vertices at (0,0), (fN/2, fN/2) and 
(fN,0). The wave skewness and asymmetry are defined by the sum of the real and imaginary parts of the bispectrum over this octant respectively, 
normalised by the cube of the free surface elevation standard deviation (Elgar, 1987; Elgar and Guza, 1985a). This reads: 

Sk =

[

12
∑

n

∑

l
Re{B(fn, fl)}+ 6

∑

n
Re{B(fn, fn)}

]/

(ζ − ζ)2 3/2
(B.1) 

Fig. C1. Squared bicoherence b2 computed using the definition of Hagihira et al. (2001) for wave test A2 (left) and A3 (right). The octant above the 1:1 diagonal 
corresponds to the bicoherence for stage II while stage III is that under the diagonal. Due to the symmetric properties of the bispectrum, only one octant is shown for 
each stage. The separation between infragravity and short-wave frequencies (0.6 fp) is shown as the dashed black line. Only bicoherence values greater than the 95% 
significance level as defined by Haubrich (1965) (b2

95% ≥ 6/d.o.f., with d.o.f. The equivalent number of degrees of freedom) are shown. 
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As =

[

12
∑

n

∑

l
Im{B(fn, fl)}+ 6

∑

n
Im{B(fn, fn)}

]/

(ζ − ζ)2 3/2
(B.2)  

with n > l and n+ l < N. 
The cross-comparison between statistical and bispectrum-based definitions of the wave skewness and asymmetry computed for A3 is provided in 

Fig. B1 and shows a perfect match between both definitions, thus validating the present computations of the bispectrum. Note that for these com-
parisons, blocks were not tapered and rectangular windows were used for computing the Fast Fourier Transforms. Using any other types of windows 
resulted in small differences between the two definitions of both third-order wave parameters. 

Appendix C. Normalised bispectra (bicoherence) 

We generally seek a normalisation of the bispectrum so that it takes 1 as value when there is a full coupling between the three components involved 
and 0 when there is none. In the case of surface gravity waves, this would correspond to a situation with the only presence of forced or free energy 
respectively. At present, there does not seem to be a consensus in the literature on what definition of the bicoherence should be used to robustly 
quantify or at least characterize the relative dominance of forced energy (e.g. Haubrich, 1965; Kim and Powers, 1979; Elgar and Guza, 1985a; Hinich 
and Wolinsky, 2005; de Bakker et al., 2015, and many others). The normalisation proposed by Haubrich (1965) is frequently used for studying 
non-linearities in the nearshore area but was shown to lead to values greater than 2 (e.g. Elgar and Guza, 1985a). In the present study, this was also the 
case, but only when merging across frequencies was performed beforehand. Nonetheless, a slightly different normalisation that was proposed in 
Hagihira et al. (2001) is used in the present case as it seems the most appropriate normalisation (see their Appendix): 

b( f1, f2)=
|B(f1, f2)|

E [|A(f1)|⋅|A(f2)|⋅|A∗(f1 + f2)|]
(C.1) 

As explained in Hagihira et al. (2001), the bicoherence is 1 only when phase angles of all triple products are equal. 
Squared bicoherence values b2 for both II and III regimes of propagation are shown in Fig. C1. As frequency merging is inappropriate with this 

definition of the bicoherence (due to the expected value in the denominator), b values were averaged over a 3x3 square in the frequency space. 
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Michallet, H., Cienfuegos, R., Barthélemy, E., Grasso, F., 2011. Kinematics of waves 
propagating and breaking on a barred beach. Eur. J. Mech. B Fluid 30 (6), 624–634. 
https://doi.org/10.1016/j.euromechflu.2010.12.004. 

Mitsuyasu, H., Kuo, Y.Y., Masuda, A., 1979. On the dispersion relation of random gravity 
waves. Part 2. An experiment. J. Fluid Mech. 92, 731–749. https://doi.org/10.1017/ 
S0022112079000859. 

Mouragues, A., Bonneton, P., Lannes, D., Castelle, B., Marieu, V., 2019. Field data-based 
evaluation of methods for recovering surface wave elevation from pressure 
measurements. Coast. Eng. 150, 147–159. https://doi.org/10.1016/j. 
coastaleng.2019.04.006. 

Norheim, C.A., Herbers, T.H.C., Elgar, S., 1998. Nonlinear evolution of surface wave 
spectra on a beach. J. Phys. Oceanogr. 28, 1534–1551. https://doi.org/10.1175/ 
1520-0485(1998)028<1534:NEOSWS>2.0.CO;2. 

Ochi, M.K., 1998. Spectral Analysis. Cambridge University Press, Cambridge Ocean 
Technology Series, pp. 13–57. https://doi.org/10.1017/CBO9780511529559.003. 

Padilla, E.M., Alsina, J.M., 2017. Transfer and dissipation of energy during wave group 
propagation on a gentle beach slope. J. Geophys. Res.: Oceans 122, 6773–6794. 
https://doi.org/10.1002/2017JC012703. 

Peregrine, D.H., Bokhove, O., 1998. Vorticity and surf zone currents. In: Proceedings of 
the 26th Conference on Coastal Engineering, pp. 745–748. Copenhagen, Denmark.  

Phillips, O.M., 1960. On the dynamics of unsteady gravity waves of finite amplitude. Part 
1. The elementary interactions. J. Fluid Mech. 9, 193–217. https://doi.org/10.1017/ 
S0022112060001043. 

Plant, N.G., Holland, K.T., Haller, M.C., 2008. Ocean wavenumber estimation from wave- 
resolving time series imagery. IEEE Trans. Geosci. Rem. Sens. 46, 2644–2658. 
https://doi.org/10.1109/TGRS.2008.919821. 

Ramamonjiarisoa, A., Coantic, M., 1976. Loi experimentale de dispersion des vagues 
produites par le vent sur une faible longueur d’action. Comptes Rendus Hebd. 
Seances Acad. Sci. Ser. A B 282, 111–113. 
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