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Where are we now?

e There is an observed cooling and
freshening of the subpolar gyre (SPG)

over the last century (IPCC SROCC 2019)

e This could be a fingerprint of an on-going

weakening of the Atlantic ocean

circulation (by about 15% Caesar et al.

2018)

e Lessons from the past both in glacial and
interglacial periods highlight that abrupt

changes/tipping points are possible

Masson-Delmotte et al. 2012
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Non linearity of the Atlantic
Overturning (AMOC)?

e Stommel (1961) early showed that the
AMOC may exhibit strongly non-linear
response to surface freshwater forcing

* His simple analytical model showed that T
the AMOC may have multiple solutions - 212
for a given freshwater forcing and |
hysteresis behavior ]

e Still true in higher resolution models (cf.
Rahmstorf et al. 2005, Jackson et al
2018...)

This is a steady state response! F (sv)
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(potentially implying millennial scale)




Large-scale impact of a substantial weakening
in the Atlantic circulation
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Risk of AMOC substantial weakening
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Low probability-high impact event
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Still so much AMOC

uncertainty in CM|

AMOC strength [Sv]
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Key questions

e How has evolved the millennial AMOC since the beginning of
the Holocene? And what might be the main drivers?

o Is the AMOC moving towards a tipping and what is causing its
weakening over the recent period (if any)?

o Is the impact of GrIS melting now well represented?

e What kind of changes might occur in the near future?
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Materials and methods

e Data are more convincing than models from a scientific point of view...

> Instrumental ones since about 1850

> Paleo data and pseudo-proxy approaches

e Database from climate Model Intercomparison Projects (CMIP)

WCRP"CMIP6
World Climate Research Programme

e Emergent constraint approaches: combining models and

observations to improve projections




Key questions

* How has evolved the millennial AMOC since the beginning
of the Holocene? And what might be the main drivers?

* s the AMOC moving towards a tipping and what is causing
its weakening over the recent period (if any)?

* Is the impact of GrIS melting now well represented?

* What kind of changes might occur in the near future?



A new AMOC reconstruction over the Holocene

Stacked Delta—SS (um)

e Use of 22 sediment cores with SST proxy records

(Eynaud et al. 2017)

e Use of EOF analysis to find consistent variability
(Ayache et al.2018)
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e \Validation using pseudo-proxy (does the
method work in the model “world”?)

e Validation using independent of deep ocean
circulation, glaciers’ evolution...

e C(Calibration in Sverdrup using NH hemisphere
reconstruction (Jomelli et al., Nat. Com., 2022)

What is causing the maximum at the mid-
Holocene?



A stronger AMOC at the -2, @g o s d s
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" Weak
Nile runoff

A new mechanism to explain the
weakening of the AMOC from 6 ka
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1) No MOW: direct impact on density distribution in the ocean

= Lower zonal density gradient at depth (=500-1500m)

= Thermal wind relationship: weakened AMOC at depth
2) No MOW: impact on subtropical gyre geometry
= Increased subtropical surface water transport in the North Atlantic

= Increased surface salinity and convection in the North Atlantic

= Increased AMOC and subpolar gyre
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Key questions

* Is the AMOC moving towards a tipping and what is causing
its weakening over the recent period (if any)?



How to have early warnings of a potential

abrupt change?

e Theory from dynamical system teaches us
that approaching a tipping point, the
system variability tend to increase

e Boulton et al. (2014) : we need at least
250 years to be able to apply to AMOC

e Bowers et al. (2021) : we are approaching
a tipping point (but using AMOC
fingerprints over only the last 150 years)

e This might be a bit short, and the new
EWS method of Boers et al. (2021) has
not been tested in “pseudo-proxy”
approach

Change of temporal variability when
approaching a tipping point

Far from the tipping point: Rapid recovery to

perturbations

Approaching the tipping point: Slower recovery to
perturbations
~—

No recovery, change in state

At the tipping point:

Adapted from: Lenton 2011



Proximity to an AMOC tipping point?
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Reconstructing climatic modes of variability from proxy records
using ClimIndRec version 1.0

Simon Michel', Didier Swingedouw!, Marie Chavent2, Pablo Ortega®, Juliette Mignot*, and Myriam Khodri*

Proxy records
database

Statistical
reconstruction (PCR,
PLS, Random forest,
Elastic net) including
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AMOC internal variability
and climate sensitivity

Temperature anomaly (K)
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e What is causing the AMOC weakening?

e Can it affect climate sensitivity estimates over

the last century?

Global near-surface temperature (GSAT) in IPSL-CM6A
large ensemble
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AMOC estimate from OVIDE

What about the AMOC i
over the last 30 years? i
i

* We now have 30 years with in situ “‘25

observation-based estimates of

80 185 1090 05 W0 005 100 05 0
the AMOC (cf. Jackson et al. 2022)

CMIPE DAMIP 657550 motes - 55 596 o

* No AMOC trend on this timesclae N '
(Worthington et al. 2021), which 07
is also coherent with Caesar et al. I

(2018, 2021) estimates

 Variability forced by the NAO, but
also consistent with a response to
volcanic eruption response (cf.
Swingedouw et al., 2015).

Standardized unit

-4 1

* Still at play in CMIP6 Detection-
Attribution ensemble (Borchert et
al., GRL, 2021) 7 0 e P, s,
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How can we explain recent AMOC variations?

e Volcanic eruptions might be
part of the AMOC variability
on top that forced by the
NAO (Swingedouw et al.,
Nat. Com., 2015)

e |t fits well with Great Salinity
anomalies timing since the
late 1960s

e |tis partly validated using
paleo-data (but not with all
of them... thus, more is
requested to further validate
this hypothesis)
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Key questions

* How has evolved the Imillennial AMOC since the beginning
of the Holocene? And what might be the main drivers?

* s the AMOC moving towards a tipping and what is causing
the weakening over the very recent period (if any)?

* Is the impact of GrIS melting now well represented?

* What kind of changes might occur in the near future?



Runoff and Solid Ice Fluxes
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* Overwrite runoff and calving in the the
Greenland region by those observation-
based fluxes

e Use of 10 members of IPSL-CM6A-LR
historical simulations including this melting
since 1920 (Melting ensemble)

* Comparison with historical simulations from
IPSL-CMG6A-LR starting from same initial
conditions (Historical ensemble)

Devilliers et al. 2021
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Impacts on the AMOC

* The AMOC is slightly affected by
the freshwater trends

* It weakens by 0.20 + 0.39 Sv at
45°N

* Farlessthanthe 3 +1 Sv
estimated by Caesar et al. (2018)

Devilliers et al. 2021 meIE ACTI2N
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Mixed layer depth anomalies

Impacts of oceanic
resolution on GrlIS impact

* We compare IPSL-CM6A Low Resolution (LR,
50-60 km) run with very High Resolution
(HR, 2-3 km) simulations from an ocean-
only model (Swingedouw et al., Frontiers, 2022

HR simulations
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* Higher impact of Greenland melting on the
AMOC in the HR runs
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Key questions

* What kind of changes might occur in the near future?



Possibility of Abrupt C
North Atlantic in clime

e Some CMIP models do show abrug
cooling in the subpolar gyre (SPG)

e Two different processes

a

® Disruption of the AMOC (strong
decrease of convection both in
the Labrador and Nordic Seas)

® Collapse of convection in the -
Labrador Sea : can occurinonly -
one decade => the SPG as a -

new tipping element

e This was true in CMIP5 (Sgubin
et al. 2017) and is still the case
in CMIP6 for SPG collapse
(Swingedouw et al. 2021)

d

Sgubin et al. 2017, Swingedouw et al. 2021
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Depth (m)

SPG stratification as an
Emergent constraint

Stratification in the SPG is a key
component of convection process
Models showing abrupt changes are, on
average, better than the ones showing
no abrupt change

When using this as an emergent

constraint, the probability for such a SPG

rapid cooling before 2100 can be
estimated between about 36% (CMIP6)
to 45% (CMIP5)
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Impacts of abrupt decadal cooling

Temperature in the UK

e Decadal climate variability can play a a key e T S S
role for uncertainty at the regional scale e E
(Hawkins et Sutton 2009) o i) B

e Such impacts can be very fast (<10 years)

e They might affect climate of Europe for at
least a decade with various consequences
on adaptation plans, e.g. agriculture.
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|
Proximity to a SPG tipping point? CYEP

European Climate Prediction system

e To analyse the proximity to tipping points, ‘Strafclflcgtmn. n the S.PG .
models can be useful as well, on top

classical early warning statistical approach.

100 —

e For instance, since SPG stratification is
crucial element of convection, and a useful
emergent constraint for the evolution of 200 - .
centennial SST trend, it is interesting to
define a critical stratification

Depth (m)

300 -

e This is the stratification just before the
large drop in SST

400 - =
Present—day (2000—2014)

e When estimated in CMIP5 models, we can | csa (1968-1971) i
see that recent days are in the envelop Critical stratification in models
0 i i 500
(66%) of the models just before theit oo | aem | 2720 | ors0 | 2o
abrupt cooling... Density (kg/m®)

Swingedouw et al., Surv. Geoph., 2020



Decadal predictions to gain insights on early
warnings of abrupt changes

Initial conditions

External forcing

Weather Seasonal Decadal Centennial Glacial
forecast prediction prediction projections cycles

cIJIay week month year declade century millennium

Time scale



What are the research gaps?

* Observation systems are needed for an efficient early warning
system

e Continue on-going in situ arrays and monitoring systems

 |nclude more oceanic observations below 2000m
* Decadal prediction systems still need further development to:

e Diminish their offset to observations
e Avoid drift when launched from the observed ocean

* Need for further reconstructions of the last few thousands of years
to have better insights on “natural variability” and the approach of a
tipping point

* Assessment of the impact of such low probability - high impact
scenario in adaptation plans are poorly accounted for up to now



Key take-home messages

* The AMOC have largely shaped climate variability over the Holocene
* On-going changes in the AMOC and SPG are not clearly attributed yet

* There is a possibility of Abrupt Changes in the North-Atlantic/Arctic in
IPCC-type climate models

* [t might take about a century for the AMOC and a decade for the SPG

* Both events have global impacts (marine life, Sahel precipitation,
European climate, storms, agriculture, Asian monsoon shift...)

* Decadal prediction systems need to be further developed to have
efficient early warnings of such potential abrupt changes

* Adaptation plans should include such low probability — high impact
scenarios



Thank you!



