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Bridging the gap between

paleodata

and climate projections
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The Earth in a
Petri dish?




Input
(initial
conditions)

External forcing



Temperature °C

Internal variability & forced response

Historical period
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Instabilities and bifurcation

Spontaneous change of temperature and 2\
Atlantic Meridional Overturning Circulation N -
(AMOC) in pre-industrial simulation of EC-Earth / ' ’
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Uncertainty in future climate

Global temperature simulation in various models  accesscm
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Two main modelling sources of uncertainty for the future (Hawkins & Sutton 2009):
1. Model disagreement (e.g. climate sensitivity from about 2 to 6°C in CMIP6!)

2. Internal variability

AMOC uncertainty is also huge and is a key source of climate uncertainty for the
North Atlantic sector (Bellomo et al. 2021)



What can paleo-data tell us about future climate?

1. Knowledge of internal variability and bifurcation risks
2. Bed-test for model response to external forcing changes

3. Emergent constraint methods as a statistical way to bring model and (paleo?)-
data together

Courtesy of Valentin
Portmann




What can paleo-data tell us about future climate?

1. Knowledge of internal variability and bifurcation risks



Internal variability and climate sensitivity

Global near-surface temperature (GSAT) in IPSL-CM6A large ensemble
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How to have early warnings of a potential
abrupt change?

Change of temporal variability when
approaching a tipping point

Far from the tipping point: Rapid recovery to

perturbations

e Theory from dynamical system teaches us
that approaching a tipping point, the
system variability tend to increase

e Boulton et al. (2014) : we need at least
250 years to be able to apply it to the

Approaching the tipping point: Slower recovery to

e Bowers (2021) : we are approaching a
tipping point (but using observed AMOC
fingerprints over only the last 150 years)

No recovery, change in state

At the tipping point:

e This might be a bit short, and the new
EWS method of Boers (2021) has not
been tested in “pseudo-proxy” approach

Adapted from: Lenton 2011



Proximity to an AMOC tipping point?

PAGES2k 2.0.0 (692 records from 648 sites)

Validation:

P SRR S e

Proxy records
database

bivaiva (1)
borehole (3)
coral (96)
documents (15)
glacier ice (49)
hybrid (1)

laxe sediment (¢
marine sedimen
sclerosponge (8
spelecthem (4)
tree (415)

Statistical
Climate reconstruction (PCR, Climate
index on PLS, Random forest, index on
historical Elastic net) including longer time
period training and testing period
sampling

e Within the reconstruction through leave-one-out method

Using independent ocean proxy records

Using pseudo-proxy method: reconstructing the variability mode in a model
simulation using the same sampling of proxy records and the same statistical

regression method

Michel et al., Nat Com., 2022



Proximity to a tipping point

in the North Atlantic?
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We use the Atlantic Multi-decadal Variability
(AMV) index where external forcing has
been removed (e.g. anthropogenic aerosols)

2020

We also remove it from proxy records

This external forcing signal is estimated from

CMIP5 ensemble

By doing so, we might be able to isolate
internal variability in the Atlantic sector

Its reconstruction show that the North
Atlantic system might be approaching an

instability
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What paleo-data can tell us about future climate?

2. Bed-test for model response to external forcing changes



AMOC from OVIDE instrumental reconstruction
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e Volcanic eruptions might be I T
part of the AMOC variability 1.20 -
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Last millennium
perspective

* We select the same timeseries
following volcanoes in data and SST in
the North Atlantic from the model

* Significant correlation both in model
and data, following AMOC variations
by around 5 years

5 Selected Volcanoes (return period=40 years)
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Stacked Delta—SS (um)

A new AMOC reconstruction over the Holocene

e Use of 22 sediment cores with SST proxy records (Eynaud et al. 2017)
e Use of EOF analysis to find consistent variability (Ayache et al.2018)
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~ Group2 _ Groupd - e Validation using pseudo-proxy (does the

method work in the model “world”?)

e Validation using independent of deep
ocean circulation, glaciers’ evolution...

e Calibration in Sverdrup using North
Hemisphere reconstruction (Jomelli et al.,
2000. 4000. 6000. 8000. 10000. Nat. Com., 2022)
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A stronger AMOC at the

mid-Holocene?

e Bornetal. (2011): this is because less sea
ice is formed and transported in the SPG at

6 ka BP

Gainusa-Bogdan et al. (2021): the spread in
AMOC response might explain the spread in
T2M response over Europe In PMIP

e An emergent constraint?
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What paleo-data can tell us about future climate?

3. Emergent constraint methods as a statistical way to bring model and (paleo?)-
data together



How to constrain future climate projections by
using observations?

Now used in
IPCC

assessment
reports
(since 2021)

Constrained
values

e.g. global temperature in 2100
Target variable y

Aluiep1aoun [9poW-Jau|

Observed

values
& : :

Observable x
e.g. trend of temperature over the 20t century Eyring et al. 2019



® Observations
Two examples “ Original model estimate

= Contrained model estimate

Global temperature change (SSP2-4.5) Temperature change over France
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What paleo-data can tell us about future climate?

4. Known unknown



Runoff and Solid Ice Fluxes
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Mixed layer depth anomalies

Impacts of oceanic
resolution on GrlIS impact

HR simulations

e We compare IPSL-CM6A Low Resolution
(LR, 50-60 km) run with very High
Resolution (HR, 2-3 km) simulations
from an ocean-only model (Swingedouw
et al., Frontiers, 2022)

e Higher impact of Greenland melting on
the AMOC in the HR runs

AMOC anomalies in HR simulations
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Courtesy of
Vincent Hanquiez




Key take-home messages

Climate can substantially change without being forced by any external forcing!

Paleo-data and models can be used together to test reconstruction method
(e.g. pseudo-proxy approach)

Paleo-data can strongly help our understanding of recent climate change, its
future response to external forcing and better evaluate the risk of bifurcation

Some new methods (emergent constraint) are now being adopted by IPCC to
try to quantitatively reduce uncertainty in model projections: paleo-
reconstruction can clearly contribute to this new paradigm

e There still exists huge uncertainty in our representation of the climate system
within our model, which obliges us to humility



Thank you!



