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Is the "day after" for tomorrow?

Tales from the Gulf Stream

Didier Swingedouw
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Ocean circulation




Atlantic meridional overturning circulation (AMOC)




A glaciation of the Earth in a few weeks?
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A warming climate everywhere?

Tendance (1901-2012) de temperature de surface (HadCRUT4)

Most of the regions clearly warms over
the last century

The Atlantic subpolar gyre is one of the
few regions that experienced a cooling

This slight weakening trend is also marked
by large multi-decadal variations : o e T pec 2013

« A cooling in the 1960s, 1970s

« Arapid warming around 1995

« A cooling event in 2015 and after
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Rapid climatic variability in the past

Rapid Reductions in North Atlantic
Deep Water During the Peak
of the Last Interglacial Period

Eirik Vinje Galaasen,™* Ulysses S. Ninnemann,™? Nil Irvali,? Helga (Kikki) F. Kleiven,*?
Yair Rosenthal,® Catherine Kissel,* David A. Hodell®

www.sciencemag.org SCIENCE VOL 343 7 MARCH 2014 ﬁ_ .
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Non linearities in the climate system
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Rayleigh-Bernard convection
o X(t) is the speed is upward convection
« Y(t) is the horizontal temperature gradient
o Z(t)is the vertical temperature gradient
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Non linearities in the climate system

Equator 1 F l Pole
Stommel (1961) model

Volume transport between the
equator and the pole proportionnal to S1,TI
the density gradient

S2, T2
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Positive and negative feedbacks

Heat transport
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Tipping elements of the climate system

Lenton et al. (2008) : The word “tipping point” refers to a critical
threshold beyond which a small perturbation can qualitatively modify

the state of a system.
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Atlantic meridional overturning circulation (AMOC)
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Measured every two years in June

between Portugal and tip of Greenland
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Recent evolution of the AMOC

No clear trend over 15 years
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Internal changes in the AMOC
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Future of the AMOC?

Modelling Global Climate

Vertical exchange between layers
of momentum, heat and moisture

Horizontal exchange
between columns

of momentum,
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Remaining questions

* Are comprehensive climate models too
stable?

* What is the timing and exact climatic impact
of an AMOC change?

e What are the associated risks?




On the possibility of abrupt changes in models

We scaned CMIP5 model database
and did find a number of abrupt
events (Drijfhout et al., PNAS 2015)

Criteria of search: a 10-year change

in projection larger than 4

standard deviation of the control

preindustrial simulation
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On the possibility of abrupt changes in models

Then, we put the focus on the North
Atlantic region (Sgubin et al., Nat.
Com., 2017)

We did find a number of models with
MIROC5 _ CSIRO-Mk360 _— GFDL-ESM2G __. CESM1-CAM5 _ GISS-E2-R

rapid cooling events (2-3°C cooling in Température dans Ia boite rouge

less than 10 years !)
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Mechanisms at play

Temp
Surface
201290, density \ = Stratification /"
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transport in the - Convectlon

Labrador Sea Large cooling in the
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Greenhousyy
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Mixed layer depth reduced
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Thermal capacity of the ocean
reduced ‘ Strong cooling in winter



On the possibility of abrupt changes in models

P

EMBRACE

+ |f we account for all models,
there a 17% risk of having such a
cooling in the on-going century

+ |f we use the stratification to
select models and we take the
11 best models, then the risk
rises to 45%

«» There is a similar, but a bit
weaker risk, in CMIP6 (around
35%)

Sgubin et al., Nat. Com. 2017
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a Temperature anomaly ion 2100
Non abrupt

Climatic impact
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Impacts of abrupt decadal cooling

Temperature in the UK

« Decadal climate variability can play a a key role for
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Last millennium

Bruegel : Les chasseurs dans la neige (1565)

A rapid change in the AMOC or
simply in the subpolar gyre
(SPG) might explain the
beginning of the little ice age in
the 14th century (Sicre et al.
2008, Miller et al. 2009,
Moreno-Chamaro 2017, Moffa-
Sanchez et al. 2017, Michel et
al., inrev.)




What about Greenland melting?




Greenland ice sheet as another tipping element

Greenland: Risk of complete
melting as soon as 2-3°C of global
warming

Total melting represents about
6-7 meters of global sea level rise

Timing for the melting difficult to
estimate but might request
centuries to millennia
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Response of the AMOC to Greenland melting

Response of the AMOC in projections including a realistic Greenland ice sheet
melting scenario (Bakker et al., GRL, 2016)

~ Projections including Impact of Greenland Projections without
50 |- Greenland melting | melting only | Greenland melting | 99-100%

1190-100%
B 66-100%
= Median
—GCM MMM

X

=> O

| e

(g=]

<

o

=

o

N

(&

O -50 n

=

<C

-100

2100 2300 2100 _ 2300 2100 2300
Year AD Year AD Year AD



Climatic impacts

AMOC index

N
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Greenland melting can induce a strong
climate impact (Swingedouw et al. 2007)

less warming around the North Atlantic
(but model dependent)

Southward migration of Intertropical
Convergence Zone (lTCZ) -3.25 —21.75 —2725 -1.75 -1.25 —0..75 —01.25 O.l25 0.75 125 175 225 275 325




Impact on the Sahel region

— GrIS Im
— GrIS 1.5m

Scenario of a rapid melting of
Greenland (DeFrance et al.
PNAS 2017)

— GrIS3m
1— RCP8.5

Rainfall change in Sahel
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Impacts of a substantial change in the AMOC
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Cascading of tipping points

(Cai et al., Nat. CC, 2017)
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Even more potential impacts not assessed yet?

Impacts on biodiversity: a new example of cascading tipping points
(Velasco et al. 2021, Communications Biology)

Amphibians are indicators of ecosystems’ health because
of their high sensitivity to novel climate conditions

A strong weakening of the AMOC can push these animals to cross their
own tipping point = a new example of cascading tipping points

Percentage of amphibian species loss

2070: RCP8.5 without AMOC collapse 100 2070: RCP8.5 with AMOC coIIapse 100
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Early warning of tipping points

Far from bifurcation:

Small deviations
+ When approaching a tipping point,
classical models do show more

Fast
recovery

X

inertia
+ As a consequence, their variations Larger deviations
are slower in time Approaching bifurcation: S

recovery

i
+ This type of behavior can be used as
an early warning: when a system is
showing wider, longer variability, it

might be approaching a tipping point

At bifurcation point:

No recovery

/

Lenton (2011)
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Proximity to oceanic tipping points?

Atlantic overturning (AMOC)

nvection!

Quadfasel 2005

Simon et al., in rev..
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Proximity to oceanic tipping points?

Subpolar gyre (SPG) December density in the SPG
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Research perspectives




Decadal predictions

Decadal predictions might help to gain insights on early warnings of abrupt changes

Initial conditions

External forcing

Weather Seasonal Decadal Centennial Glacial
forecasts predictions predictions projections cycles

(Ijay week month vyear decade century millennium

Time scale



Decadal prediction

AMOC (10% m?3/s)
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Persechino et al. (Clim. Dyn., 2013)



Include Greenland melting in decadal predictions

Greenland melting might
already be affecting the
Labrador Sea (Boning et al.
2016)

We are including this melting in
the IPSL-EPOC decadal

m

prediction system in order to Deep water formation in the Labrador Sea
estimate its potential impact in 5 Control run
the near future 6 Run with melting
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New OSNAP array
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Key take-home messages

» Possibility of Abrupt Changes in the North-Atlantic/Arctic in
IPCC-type climate models

+ They have global impacts (marine life, Sahel region, European
heat waves, storms, viticulture/agriculture, Asian monsoon
shift...)

» Decadal prediction systems, fed by Earth Observations, need to
be further developed to have early warnings of such potential
abrupt changes






