EPOC
UMR CNRS 5805 EPOC
Environnements et Paléoenvironnements
Océaniques et Continentaux
Université de Bordeaux  CNRS  Bordeaux-INP  EPHE  OASU

English Version
AccueilEvénementsRecrutementsAccèsLiensPlan du Site
 
> Evénements > Informations
Consignes de Sécurité et Numéros d'Urgence
(à l'usage des personnels du laboratoire)
Séminaire


Small-scale process as driver of large-scale dynamics in coastal vegetation

Date
le 20-09-2016 à 11:00

Lieu
Salle Univers, Bâtiment B18N, OASU, Université de Bordeaux

Intervenant(s)
Tjeerd J. Bouma, Royal Netherlands Institute of Sea Research (NIOZ)

Résumé
There is a growing desire to manage (and even create) coastal vegetation such as e.g. salt marshes, mangroves and seagrasses for coastal defense. Such application however requires in depth understanding of the dynamic horizontal extent (i.e., width) of these ecosystems. Especially understanding the factors affecting the minimum vegetation width is important. This presentation will highlight how process-based studies can help to provide insight in which factors affect the long-term large-scale development of salt marsh and other coastal vegetation. Recently it was found that vegetation establishment can be described by the Windows of Opportunity theory. Having this mechanistic understanding enables us to develop means to restore coastal ecosystems. Moreover, it allows us to gain a basic insight in which factors determine the minimum-width of a salt marsh, and how dredging material may potential be used to initiate marsh growth. Recent insights explaining that the short-term vertical sediment dynamics on the bare tidal flat is a key driver of the lateral vegetation dynamics, emphasizes that we should start with continuous monitoring of such sediment-dynamics. The vegetation response to the short-term vertical sediment dynamics can however be highly species specific, resulting in species-specific large-scale ecosystem dynamics. Experimental process-based studies remain of key importance for understanding ecosystem dynamics in addition to the rapidly developing earth observation techniques and modeling capabilities.
UMR CNRS 5805 EPOC - OASU - Université de Bordeaux
Allée Geoffroy Saint-Hilaire - CS 50023 - 33615 PESSAC CEDEX - FRANCE

| Dernière mise à jour : 18 Décembre 2023 | Contacts | Mentions Légales | © 2006-2024 EPOC |