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Stratified flow over three-dimensional topography 
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Abstract 

In order to investigate flows over topography in an atmospheric context, we have studied 
experimentally the wake structure of axi-symmetric Gaussian obstacles towed through a 
linearly stratified fluid. Three dimensionless parameters govern the flow dynamics: F, the 
Froude number based on the topography height h; Re, the Reynolds number and the aspect 
ratio r = h / L ,  where L is the topography horizontal scale. Two-dimensional (2-D), satu- 
rated lee wave (SLW) and three-dimensional (3-D) regimes, as defined in Chomaz et al. 
(1993), are found to be functions of F and r only (Fig. 1) as soon as Re is larger than 
Re c = 2000. For F < 0.7 the flow goes around the obstacle and the motion in the wake is 
quasi-two-dimensional. This 2-D layer is topped by a region affected by lee wave motions 
with amplitude increasing with r and F. For 0.7 < F < l / r ,  the flow is entirely dominated 
by a lee wave of saturated amplitude which suppresses the separation of the boundary layer 
from the obstacle. Above the critical value l / r ,  the lee wave amplitude decreases with F 
and a recirculating zone appears behind the obstacle. Simultaneously, coherent large-scale 
vortices start to be shed periodically from the wake at a Strouhal number which decreases 
as 1 / F  until it reaches its neutral asymptotic value. 

1. Introduction 

Recently,  a large research effort  has been  devoted  to the study of  geophysical  
flows over topography.  Such p h e n o m e n a  are pa r t i cu la r ly impor tan t  in meteorologi-  
cal or  oceanograph ic  contexts, since the Ear th ' s  topographies  genera te  internal 
gravity waves that  t ransfer  energy f rom the bo t tom layers to the upper  layers. The  
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Fig. 1. Flow regime diagram (F, r): 2D, quasi-two-dimensional wake regime; SLW, 'saturated' lee wave 
regime (R, roller regime); 3D, three-dimensional wake regime (T, transition regime). 

processes induced by the propagation of internal waves are important and ought to 
be taken into account in weather forecasting models. New developments of 
non-hydrostatic models require precise laboratory experiments in order to docu- 
ment test cases. Brighton (1978) and Hunt and Snyder (1980), studying reliefs with 
aspect ratios (r  = h / L )  close to 1, have shown that such flows are mainly con- 
trolled by the Froude number F = U / N h ,  where U is the flow velocity and N is 
the Brunt-V~iis/il~i frequency of the medium. They demonstrated that for small 
values of F, the near wake is quasi-two-dimensional, and that for F = 1, the flow 
separation line is conditioned by the lee wave. Chomaz et al. (1992, 1993) and Lin 
et al. (1992) have extended such an investigation by examining the dynamics of the 
stratified flow past a sphere for large ranges of Froude and Reynolds numbers. 
Theoretical analyses of stratified flow over a three-dimensional (3-D) obstacle have 
been elaborated by Smith (1980, 1989), for the hydrostatic framework, and by 
Crapper (1959), Lighthill (1978) and Voisin (1994) for the non-hydrostatic ap- 
proach. In this paper we describe the near wake structure of axi-symmetric 
Gaussian obstacles towed in a linearly stratified fluid. We demonstrate the 
influence of both the Froude number and the aspect ratio, on the flow structure 
(Fig. 1). 

Experiments were performed in a water towing tank of size 0.5 x 0.5 x 4 m 3. 
This tank was filled with a linear stratification using salt solutions N ~ [0.67, 2 rad 
s- l] .  Four Gaussian models were used in the experiments r ~ [0.28, 0.56, 0.8, 1.12]. 
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The Gaussian obstacle was suspended by five stainless steel wires, of 0.1 mm in 
diameter, and was towed along the bottom of the tank. The towing velocity varied 
from 0.5 to 25 cm s-1. When, for a given stratification N and a given model r, the 
velocity is varied, the two dimensionless numbers F and Re (Re = U(2L)/v, where 
v is the kinematic viscosity), evolve proportionally in the form Re (F )  = Re(1)F, 
where Re( l )  = 2rNL2/~. In the present study, F was varied from 0.2 to 14 and Re 
from 300 to 25 000. Visualization and measurement techniques used in the 
experiments have been described in detail in Bonneton et al. (1993) and Chomaz 
et al. (1993). 

2. The lee wave dynamics 

Particle streak photographs of the flow over two Gaussian models r = 0.28 
(Figs. 2(a)-(c)) and r -- 0.8 (Figs. 2(d)-(f)) illustrate the evolution of the lee wave 
structure as a function of F. At large F (Figs. 2(a) and (d)) a 3-D recirculating 
zone is present behind the obstacles (3-D regime in Fig. 1). Both the size and the 
unsteadiness of this zone increase with F, whereas the lee wave amplitude 
decreases. For weaker F (Figs. 2(b) and (e)) the flow is entirely dominated by a 
saturated lee wave which suppresses the turbulent wake (SLW regime in Fig. 1). 
For F smaller than 0.7 (Figs. 2(c) and (f)), the lee wave amplitude decreases and a 
2-D layer appears close to the ground (2-D regime in Fig. 1). For r = 0.28 (Fig. 
2(c)) the wave amplitude is much smaller than for r = 0.8 (Fig. 2(f)) and only the 
first crest is visible. The lee wave wavelengths measured from these visualizations 
are in good agreement with the theoretical law (A = 2~rU/N), even for small F, 
and with no significant influence from the body shape. 

From particle tracking we have determined the spatial distribution of the 
vertical component of the velocity field (see Fig. 3(a)), which enables us to deduce 
the distribution of the local amplitude of the lee wave. In Fig. 3(b), we have shown 
for r = 0.28 and r = 0.8, the angle O between the horizontal and the direction 
where the local wave amplitude is maximum. We can see that for both models, 8 
decreases notably between F ~ 1.2 and 1.6. Even if the precision is rather poor for 
r = 0.28 when F is close to 0.4, because of the small amplitude of the lee wave, 
Fig. 3(b) clearly demonstrates that e is much larger for r --- 0.28 than for r = 0.8. 
For small values of  r and F ,  the measured angle O is close to the theoretical value 
90 ° obtained with the hydrostatic approximation. However, we note that even for 
r = 0.28, the lee wave dynamics do not correspond totally to hydrostatic behaviour, 
with horizontal isophases and, in the obstacle frame, a vertical propagation of wave 
energy. Fig. 4 presents the evolution of the maximum vertical displacement ~" of a 
fluid particle, owing to the lee wave, as a function of F for r -- 0.28 and r = 0.8. 
For both cases, we observe that the amplitude (~/h) increases until F reaches 0.7 
(2-D regime). Then, it saturates around F--- 1 (SLW regime) and finally, starts to 
decrease for F larger than 1/r. Similar behaviour is obtained for the two other 
models r = 0.56 and r = 1.12. The initial increase of the amplitude with F may be 
explained by the energetic arguments of Sheppard (1956) which predict: ( /h  = F. 
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However, the theoretical predictions seem to overestimate the amplitude for the 
small aspect ratio (r  = 0.28) and underestimate it for large r (r  = 0.8). The 
transition in the lee wave amplitude for F = i / r ,  has been theoretically predicted 

r : - ~  0 . 2 8  

L F : 5 . 0 0  

L F ~ 1 6 0  

L F:: = O.60  

Fig. 2. Par t ic le  s t reak  t ra jec tor ies  in the ver t ical  cen t ra l  plane,  for r = 0.28 ( R e ( l ) =  1600) and  for 
r = 0.8 ( R e ( l )  = 2100). (The  flow is f rom left  to r ight  on all figures). 
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Fig. 2 (continued). 

by Queney (1948) who argued that a resonant regime occurs when the effective 
wavelength of the mountain (27rL) equals the lee wave wavelength (21rU/N). For 
r = 0.8, the decrease in amplitude observed at large F, seems to agree with the 
linear theory (Voisin, 1994) which predicts: ~/h ~- 1/F. 
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3. The three-dimensional wake regime (F > / 1 / r )  

3.1. Homogeneous wake 

In order to understand the stratification effects on the close wake (Nt < 2.5), 
knowledge of the wake in a homogeneous medium is required. As for the sphere 
(Kim and Durbin, 1988; Chomaz et al., 1993), we have observed that, for Reynolds 
numbers greater than a critical value Rec, the wake is affected by two instability 
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Fig. 3. (a) Vertical  velocity field in the vertical central plane for F = 0.97 and r = 0.8 (Re ( l )  = 2100). (b) 
Evolution of the angle between the horizontal and the direction of  maximum local vertical velocity 
versus F for r ~ 0.28 (Re ( l )  = 900) and for r = 0.8 (Re ( l )  = 2100). 
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Fig. 4. Evolution of the wave amplitude versus F for r = 0.28 (Re( l )  = 900, 1600 and 2400); and for 
r = 0.8 (Re( l )  = 1300, 2100 and 2700). Cont inuous line, Sheppard 's  theory; dashed line, linear theory. 

modes: a high-frequency Kelvin-Helmholtz shear instability (KH) of the separated 
layer and a low-frequency mode (VS) associated with the shedding of large-scale 
coherent vortices (Figs. 5(a) and (d)). For smaller Reynolds number values, only a 
single mode is present. Fig. 6 shows for r = 0.8, the evolution of the Strouhal 
numbers S (S =f(2L)/U, where f is the vortex shedding frequency), as obtained 
either from fluorescent dye visualizations (for low to moderate Re) or from the 
spectral analysis of hot film probe signals (for moderate to high Re). Above 
Re c = 1300, the Strouhal number of the low-frequency wake instability stabilises 
around Svs = 0.55 whereas the high-frequency branch (KH mode) keeps increasing. 
Similar behaviour is observed for the different models tested, excepted that the 
power of the power-law fit of the KH Strouhal number versus Re, decreases with 
r. Values of Re c and Svs as a function of r are reported in Table 1. 

3.2. Stratified wake 

Fig. 5 illustrates the disappearance of the shedding of large- scale vortices as the 
stratification effects increase (F  decreases). This phenomenon occurs at a critical 
Froude number F¢ depending only on r as soon as Re > Re c. For r = 0.28, F¢ is 
close to 4 (Figs. 5(b) and (c)) whereas it is close to 1.2 for r = 0.8 (Figs. 5(e) and 
(f)). In Fig. 7 we have reported the evolution of the Strouhal number S of the VS 
instability as a function of rF for several aspect ratios (r--0.28,  0.8 and 1.12). 
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Values of S were obtained either from visualizations or from both conductivity and 
velocity measurements. We note, from Fig. 7, that S decreases with F following an 
1/rF law (transition regime T in Fig. 1) before stabilising at its neutral value. This 
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Fig. 5. Fluorescence induced by laser side views for r = 0 .28  (a )  R e  = 2950;  (b)  R e  = 4000;  (c)  

R e  = 3200;  and for r = 0.8 (d )  R e  = 1500; ( e )  R e  = 1800; (f)  R e  = 1400. 
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Fig. 5 (continued). 

Table 1 

Critical Reynolds number, Strouhal and Froude number in function of r 

Type r = 0.28 r = 0.56 r = 0.80 

Rec + 10% 2000 1200 1300 

Sw + 5% 0.85 0.55 0.55 
F c + 5 %  4.0 2.0 1.2 
rF c + 5 %  1.10 1.10 0.96 

r = 1.12 

1000 
0.40 

0.8 
1.01 
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Fig. 6. Evolution of  the Strouhal number S versus Re for r = 0.8, in the homogeneous  case. Dotted 
line, best power law of  the data (SRea/Z) .  
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Fig. 7. Strouhal number S of  the low-frequency mode for r = 0.28 (750 < R e ( l ) <  2000), r = 0.8 
(1000 < R e ( l )  < 2900) and r = 1.12 (2600 < R e ( l )  < 4000). 
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result demonstrates that the VS mode frequency is controlled by stratification 
effects until it reaches its asymptotic neutral value. We see also in Fig. 7 and Table 
1 that the critical value F c equals 1/r and coincides with the limit of the saturated 
lee wave regime. The slight scattering, visible in Fig. 7, in the value of S, for given 
F and r, partly is due to Reynolds number effects, as for each aspect ratio r, up to 
three different Re(l) have been used. This demonstrates the weak influence of Re 
as soon as the VS mode is established (Re > Rec). 

4. The quasi-two-dimensional wake regime 

When F decreases below 0.7, the fluid layer that goes around the obstacle, 
instead of passing over it, starts being animated by quasi-two-dimensional motions. 

b L 

F = 0 . 3 0  

ct L 
. . . . .  F = 0 ,77 

Fig. 8. Pa r t i c le  s t r eak  t ra jec tor ies  in a hor izon ta l  p l ane  at  z = h/2,  for r = 0.8 ( R e ( l )  = 1300). (The  flow 

is f rom lef t  to right).  
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Fig. 9. Evolution versus F of the non-dimensional distance between the centre of vortices and the relief 
axis .  

An attached pair of vortices appears in the lee of the topography (Fig. 8(a)). For 
the large aspect ratio model (r = 0.8), this 2-D layer is topped by a roller visible on 
the top view of Fig. 8(b) and side view of Fig. 5(f) (roller regime in Fig. 1). This 
complex structure, described by Sysoeva and Chashechkin (1986) and Chomaz et 
al. (1993), develops under the first crest of the lee wave and therefore exhibits a 
similar shape to isophase 2zr. For small aspect ratio (r = 0.28), rollers are no 
longer present, probably owing to the rapid drop in the lee wave amplitude with F 
and also owing to the nearly vertical propagation of the wave energy observed in 
this case. 

Fig. 9 (respectively, Fig. 10) presents measurements of the distance x/L 
between the centre of the 2-D vortex pair and the centre of the body for r = 1.12, 
r = 0.8 and r = 0.28 (respectively, the width 8/L). For both the distance x/L and 
the width 8/L, results are in good agreement with the predictions of Smo- 
larkiewicz and Rotunno (1989) inviscid numerical simulations of the flow over a 
Witch of Agnesi obstacle. On the contrary, the velocities in the reversed flow 
region reported by Smolarkiewiez and Rotunno, are approximately five times 
greater than the experimental ones. This discrepancy certainly is due to the friction 
at the ground which is not taken into account in the inviscid numerical model. 
From the relative agreement between the simulations and the present experiments, 
one is tempted to conclude that the vorticity is mainly generated by the baroclinic 
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Fig. 10. Evolution versus F of the non-dimensional width between the centre of the vortices. The 
definition taken here differs from that of Smolarkiewicz and Rotunno by approximately a factor of 2. 

mechanism proposed by Smolarkiewicz and Rotunno rather than by separation of 
the boundary layer on the topography. This issue deserves further investigation. 
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