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In this paper, a newmethod to handle wave breaking in fully non-linear Boussinesq-typemodels is presented.
The strategy developed to treat wave breaking is based on a reformulation of the set of governing equations
(namely Serre Green–Naghdi equations) that allows us to split them into a hyperbolic part in the conservative
form and a dispersive part. When a wave is ready to break, we switch locally from Serre Green–Naghdi equa-
tions to Non-linear Shallow Water equations by suppressing the dispersive terms in the vicinity of the wave
front. Thus, the breaking wave front is handled as a shock by the Non-linear Shallow Water equations, and its
energy dissipation is implicitly evaluated from the mathematical shock-wave theory. A simple methodology to
characterize the wave fronts at each time step is first described, as well as appropriate criteria for the initiation
and termination of breaking. Extensive validations using laboratory data are then presented, demonstrating
the efficiency of our simple treatment for wave breaking.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

Non-linear wave transformations in shallow water, and associated
processes such as wave-breaking and run-up, play a key role in the
nearshore dynamics. A detailed knowledge of instantaneous non-
linear wave characteristics is required in place of wave-averaged
quantities for an accurate prediction of suspended sediment transport.
Elgar et al. (2001) highlighted the importance of wave asymmetry for
onshore bar migration, while recent studies focused on the influence
of different combinations of wave skewness and asymmetry on the
net sediment flux (Grasso et al., 2011; Ruessink et al., 2009). Non-
linear effects are also responsible for the generation of infra-gravity
waves, which can strongly affect beach and dune erosion during
high energy events (Roelvink et al., 2009). An accurate description
of non-linear wave transformations is also necessary for the study
of coastal flooding due to storm waves or tsunamis. The description
of these highly non-linear and unsteady processes requires phase-
resolving models with a good description of breaking and run-up
over complex bathymetries. Themost accuratemodels for the descrip-
tion of wave breaking are based on the Navier–Stokes equations. They
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can give a detailed description of wave breaking, including wave
overturning, but are highly computationally demanding and therefore
not suitable for large scale propagation applications. For this reason,
phase-resolving models based on depth-averaged equations are still
an attractive way to describe wave transformation in the nearshore
zone. Two kinds of approaches can be considered: the models can be
based on Non-linear Shallow Water (NSW) or Boussinesq-type (BT)
equations.

NSWmodels, with the help of shock-capturing schemes, can accu-
rately reproduce broken wave dissipation and swash oscillations
without any ad hoc parametrization (Bonneton, 2007; Brocchini and
Dodd, 2008; Kobayashi et al., 1989; Marche et al., 2007). The absence
of dispersive effects restricts their validity domain to areaswhere non-
linearities predominate, such as the inner surf and swash zones. They
are in particular not valid in the shoaling zone, since the absence of
dispersive effects would lead to an incorrect prediction of the location
of wave breaking. On the other hand, BT equations take into account at
different degrees of accuracy both non-linear and dispersive aspects of
wave propagation. Denoting by a the order of free‐surface amplitude,
h0 the characteristic water depth and L the characteristic horizontal
scale, most of Boussinesq models used for nearshore applications are
based on a classical shallow water assumption μ=(h0/L)2≪1 and bal-
ance between dispersion and non-linearity ε=O(μ)≪1,with ε=a/h0.
Yet, these assumptions do not always hold in the nearshore, in particu-
lar in the final stages of shoaling and in the surf and swash zones, where
ε can be of order 1. For such applications, fully non-linear BT equations
are required. Wei et al. (1995) showed that accounting for strong non-
linearities in BT approaches leads to significantly improved predictions
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of wave heights, wave celerities and internal kinematics prior
to breaking. The first set of fully non-linear BT equations was derived
by Serre (1953), and extended to the 2D case by Green and Naghdi
(1976). These equations, called Serre Green–Naghdi (S–GN) equations
thereafter, are now recognized to be the relevant system to describe
fully non-linear weakly dispersive waves propagating in the nearshore
(Lannes and Bonneton, 2009). They can accurately predict most phe-
nomena exhibited by non-breaking waves in finite depth. However,
as they do not include intrinsically energy dissipation due to wave
breaking, they become invalid in the surf zone. Besides, S–GNdispersive
terms become nonphysical in the vicinity of the breaking wave fronts.
Several attempts have been made to introduce wave breaking in BT
models by the mean of ad hoc techniques (e.g., Cienfuegos et al., 2010;
Kennedy et al., 2000; Madsen et al., 1997). These approaches generally
require (1) the inclusion of an energy dissipation mechanism through
the activation of extra terms in the governing equations when wave
breaking is likely to occur; (2) explicit criteria to activate/deactivate
these extra terms; (3) a method to follow the waves during their
propagation since the breaking parametrizations depend on the age
of the breaker. Moreover, the breaking model parameters need to be
calibrated to ensure that the artificially induced energy dissipation is
in agreement with the rate of energy dissipated in surf zone waves.
FUNWAVE (Kirby et al., 1998) is a well-known example of this kind of
models. It is based on the fully non linear Boussinesq equations of Wei
et al. (1995),with additional parametrizations to includewave breaking
and run-up (Kennedy et al., 2000). Except for being formulated in terms
of the velocity vector at an arbitrary z level, the equations of Wei et al.
are equivalent to the S–GN equations.1 FUNWAVE gives a very good
description of wave transformations in the nearshore, but each use
of the model implies the tuning of several parameters, as the ones de-
termining wave‐breaking dissipation and run-up (Bruno et al., 2009).
Recently, Cienfuegos et al. (2010) showed that Kennedy et al.'s eddy
viscosity breaking model could hardly predict simultaneously accurate
wave height and asymmetry along the surf zone. This observation mo-
tivated the development of a new 1D wave-breaking parametrization
including viscous-like effects on both the mass and the momentum
equations. This approach is able to reproduce wave height decay
and intraphase non-linear properties within the entire surf zone
(Cienfuegos et al., 2010). However, the extension of this parametriza-
tion to 2Dwave cases remains a very difficult task. Therefore, alternative
approaches to handle wave breaking in BT models may prove very
useful.

Recently, the so-called non-hydrostatic models, governed by the
NSW equations including non-hydrostatic pressure, have been intro-
duced as an alternative to BT models2 (e.g., Zijlema et al., 2011). They
can be run in multi-layered mode, improving their frequency
1 It is shown in Lannes and Bonneton (2009) that the Green–Naghdi Eqs. (1) and (2)
are the same, written in a different form, as the equations derived in Green and Naghdi
(1976) and Miles and Salmon (1985). In Wei et al. (1995), the velocity unknown is not
the averaged velocity u but, as in Nwogu (1993), the velocity taken at one arbitrary
depth zα (t, x), denoted by Vα (t, x)=V (t, x, zα (t, x)). Replacing u in (1)–(2) by its ex-
pression in terms of Vα yields the same equations as in Wei et al. (1995), up to O(μ2)
terms. We refer to Section 2 of Chazel et al. (2010) for more details on this point.

2 However, the model derived in Zijlema et al. (2011) in its one-layer formulation
(Eqs. (18)–(21)) can be rewritten in a quasi BT form:

∂tζ þ ∂x huð Þ ¼ 0

∂tuþ u∂xuþ g∂xζ ¼ 1
4h

∂x h3∂xtu
� �

−∂x h2∂x huð Þ∂xu
� �h i

;

where several non-linear terms present in the S–GN equations have been neglected;
moreover, the linear wave celerity associated to these equations is given by c2=gh0

(1−μ/4) which differs at order O(μ) from the exact linear wave celerity c2 ¼ gh0
tanh μ1=2ð Þ

μ1=2 ,

while for standard Boussinesq models one gets c2=gh0 (1−μ/3+O(μ2)), which is
correct up to O(μ2) terms. The precision of these models, that is, the error between
the solution of the Green–Naghdi equations and the solution of the full Euler equa-
tions is then of order O(μ2t), as shown in Alvarez-Samaniego and Lannes (2008).
dispersion properties, but also include a special treatment for wave
breaking (classical Prandlt mixing length parametrization) as they
do not explicitly account for small-scale turbulent processes.

The fully non-linear numerical model presented in this study is
based on S–GN equations. It is worthwhile to note that S–GN equa-
tions degenerate naturally into NSW equations when dispersive
effects are negligible. These equations are therefore well-suited to de-
scribe wave propagation until the swash zone. In order to treat wave
breaking, a hybrid approach has been developed. S–GN equations
are reformulated in away that allows us to split them into a hyperbolic
part corresponding to the NSW equations in the conservative form
and a dispersive part (see Bonneton et al., 2011b). The idea is to switch
from S–GN to NSW equations when the wave is ready to break by
suppressing the dispersive term. This method allows for a natural
treatment of wave breaking, since the energy dissipation due to wave
breaking is predicted implicitly by the shock theory, and does not
require to be parametrized. It is an important point since the amount
of energy dissipated will determine crucial phenomena such as the
water level set-up (Bonneton, 2007), and will impact wave-driven cir-
culation (Bonneton et al., 2010; Bühler, 2000; Smith, 2006).

From a numerical point of view, an operator-splitting approachwith
hybrid finite volume/finite‐difference schemes has been implemented
(Bonneton et al., 2011b), allowing for the most effective schemes to
be used for each part of the equations. Some hybrid numerical methods
have already been developed in the past years, mainly within the
framework of weakly non-linear BT equations (Briganti et al., 2004;
Erduran, 2007; Erduran et al., 2005; Orszaghova et al., 2012; Shiach
and Mingham, 2009; Soares-Frazão and Guinot, 2008; Soares-Frazão
and Zech, 2002; Tonelli and Petti, 2009, 2010, 2012; Weston et al.,
2003), but also recently within the framework of fully-non‐linear BT
models (Shi et al., 2012). Among thesemodels, only few take advantage
of the shock-capturing properties of the Finite Volume schemes to treat
wave breaking (Orszaghova et al., 2012; Shi et al., 2012; Tonelli and
Petti, 2009, 2010, 2012;Weston et al., 2003). A natural approach to han-
dle wave breaking with this kind of models is to estimate the breaking
point location and subsequently divide the numerical domain spatially
into pre- and post- breaking areas, respectively governed by BT and
NSW equations (e.g. Shi et al., 2012; Tonelli and Petti, 2009, 2010;
Weston et al., 2003). This simple decomposition is of great interest for
engineering purposes, in particular for the study of submersion risks,
traditionally based on NSW models. Indeed, it allows for an accurate
and simple description of both non-breaking and breaking wave trans-
formations, and a treatment of shoreline motions without any parame-
trization. However, most of these models do not include an explicit
criterion for the termination of breaking. Applying these methods to
the description of irregular wave trains propagating over uneven ba-
thymetries is therefore not straightforward, since in this case, series of
alternatively breaking and non-breaking waves can be observed at a
given time. It is only recently that Tonelli and Petti (2012) applied
an extended version of their hybrid model (including an additional
criterion for the switch back to BT equations) to describe the transfor-
mation of irregular waves.

In this paper, a new approach to handle wave breaking in hybrid
models is presented. Instead of defining extended breaking areas
where theflow is governed by theNSWequations, we treat individually
the breaking of each wave front. More precisely, our breaking model
is based on switches performed locally in space and time from S–GN
to NSW equations in the vicinity of the wave fronts. With this local
treatment, we intend to obtain a model able to account simultaneously
and accurately for the effects of dispersion, non-linearities and wave
breaking for a given wave. This is of importance when considering
for instance tsunami wave front transformations in the nearshore,
which can evolve into a large range of bore types, including partially
breaking undular bores. Moreover, the proposed "wave-by-wave"
treatment allows for a precise description of the breaking events,
from the initiation to the termination. The approach is therefore
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well-suited to describe the transformation of irregular wave trains, as
well as their transformations over complex bathymetries, including
barred beaches.

The numerical model is briefly described in Section 2. The strategy
developed to handle wave breaking is then presented in Section 3.
Extensive validations using experimental data are then performed
(Section 4), including periodic wave transformations over a planar
beach, solitary wave breaking, run-up and overtopping, and wave
breaking over a bar. At last, some preliminary tests concerning hydraulic
bore dynamics are performed, showing promising results concerning
the model ability to predict the complex transition from undular to
breaking bore.

2. Description of the model

Our model is based on a new 2D conservative S–GN formulation.
These equations and the numerical methods to solve them are de-
scribed in Bonneton et al. (2011b). In this section we sum up the
main characteristics of our S–GN model in 1D.

2.1. Governing equations

The model is based on the S–GN equations. These equations can be
formulated in term of the conservative variables (h, hu) in the following
dimensionalized form:

∂thþ ∂x huð Þ ¼ 0;

∂t huð Þ þ ∂x hu2 þ gh2=2
� �

¼ −gh∂xbþD−f
1
h

uk ku;

8<
: ð1Þ

with u the depth‐averaged horizontal velocity, ζ the surface elevation, h
the water depth, b the variation of the bottom topography and f a non-
dimensional friction coefficient. D characterizes non-hydrostatic and
dispersive effects and writes:

D ¼ 1
α
gh∂xζ− 1þ αhT 1

h

� �−1 1
α
gh∂xζ þ hQ1 uð Þ

� �
; ð2Þ

where the linear operator T is defined as

T w ¼ −h2

3
∂2
x w−h∂xh∂xwþ ∂xζ∂xbþ h

2
∂2
x b

� �
w; ð3Þ

and:

Q1 uð Þ ¼ 2h∂x hþ b
2

� �
∂xuð Þ2 þ 4

3
h2∂xu∂

2
x uþ h∂2

x bu∂xu

þ ∂xζ∂
2
x bþ h

2
∂3
x b

� �
u2

: ð4Þ

α is an optimization parameter that should be taken equal to 1.159 in
order to minimize the phase and group velocity errors in comparison
with the linear Stokes theory (see the dispersion correctionmethod dis-
cussed in Cienfuegos et al. (2006)). Note that the range of validity of this
set of equations can been extended to deeper water, using some addi-
tional optimization parameters, as described in Chazel et al. (2010).

The proposed formulation has two important advantages. First
of all, the dispersive term does not require the direct computation
of any third order derivative, allowing for more robust numerical
computations. Moreover, if D=0, we obtain the NSW equations in
their conservative form. The formulation is therefore well-suited for
a splitting approach separating the hyperbolic and the dispersive
part of the equations, allowing for an easy coupling of the sets of
equations.
2.2. Numerical methods

At each time step δt, we decompose the solution operator S(·) as-
sociated to Eq. (1) by the second order splitting scheme

S δtð Þ ¼ S1 δt=2ð ÞS2 δtð ÞS1 δt=2ð Þ; ð5Þ

where S1 and S2 are respectively associated to the hyperbolic and dis-
persive parts of the S–GN Eq. (1). More precisely:

• S1 (t) is the solution operator associated to NSW equations

∂thþ ∂x huð Þ ¼ 0;

∂t huð Þ þ ∂x hu2 þ gh2=2
� �

¼ −gh∂xb−f
1
h
∥u∥u:

8<
: ð6Þ

• S2 (t) is the solution operator associated to the remaining (dispersive)
part of the equations,

∂th ¼ 0;
∂t huð Þ ¼ D:

�
ð7Þ

2.2.1. Hyperbolic part
Our S–GNmodel has been developed as an extension of the widely

validated NSW code SURF-WB (see Berthon and Marche, 2008;
Marche et al., 2007). The system (6) can be regarded as a hyperbolic
system of conservation laws with a topography source term and a
friction term. To perform numerical approximations of the weak
solutions of this system, we use high‐order finite volume method in
conservative variables, based on a positive preserving relaxation
scheme and MUSCL reconstructions (see Berthon and Marche
(2008)). Since we aim at computing the complex interactions be-
tween propagating waves and topography, including the preservation
of motionless steady states, a well-balanced scheme is used for the
discretization of the topography source term (see Audusse et al.,
2004). Gathering these approaches, we obtain a high-order positive
preserving well-balanced shock-capturing scheme, able to handle
breaking bores propagation as well as moving shorelines without
any trackingmethod (Marche et al., 2007). The friction term is treated
following the method presented in Berthon et al. (2011).

2.2.2. Dispersive terms
System (7) is solved at each time step using a classic fourth-order

finite-difference approach. It is worth mentioning that we only need
to solve one scalar equation (rather than a set of two equations)
during this dispersive step. Indeed, h remains constant owing to the
first equation of (7).

Concerning the time discretization, explicit methods are used both
in (S1) and (S2). The systems are integrated in time using a classical
fourth-order Runge–Kutta method.

2.2.3. Treatment of the shoreline
No special tracking procedure is used to handle shoreline motions.

Dry cells are defined as those in which the water depth is less than a
threshold value hε. A small routine is applied to ensure the stability
of the numerical results at the shoreline: when the water depth h is
smaller than hε, we impose v=0 (hε=10−5 in Section 4). The disper-
sive terms are suppressed when the water depth vanishes.

Extensive validations of the numerical methods for the 1D problem
can be found in Bonneton et al. (2011a,b) and Chazel et al. (2010).

3. Wave breaking

Prior to breaking, S–GN equations give a very accurate description
of wave transformations, including internal kinematics (Carter and
Cienfuegos, 2011). However, depth-averaged approaches cannot
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reproduce wave overturning and small-scale processes related to
wave breaking. Approximate representations of the breaking process-
es are therefore needed. They are generally less accurate in the first
stages of breaking, in particular for plunging breakers. By switching
locally to NSW equations, we decide to represent breaking wave
fronts as shocks: we conserve mass and momentum across the wave
front, and allow energy to dissipate, according to the shock theory.
The switch from the S–GN to the NSW equations is performed locally
in time and space, by skipping the dispersive step S2 (δt) when the
wave is ready to break. As we aim at applying our code to realistic
incoming waves, implying different locations of the breaking point,
we need to handle each wave individually. We present in this section
a simple way to characterize the wave fronts at each time step, as well
as adequate criteria for the initiation and termination of breaking.

3.1. Characterization of the wave fronts

The switches from one set of equations to another are performed
in the vicinity of the wave fronts, defined as the parts of the waves
lying between the crest and the trough in their direction of propaga-
tion. We therefore first need to locate the wave fronts of interest, that
is to say the breaking or broken fronts as well as those likely to break,
and then decide which set of governing equations should be applied
in their vicinities.

A simple way to identify these wave fronts at each time step is to
detect the shocks forming during the NSW steps through the study of
the energy dissipation. Indeed, the energy dissipation forms peaks at
the steepest parts of the wave fronts when shocks are forming. This
method can also be applied to the detection of the wave fronts likely
to break since shocks are already forming during the NSW steps at the
last stages of shoaling. However, as long as the dispersive terms are
activated, the dispersive step (S2) counteracts the shock development
occurring during the NSW steps (S1), preventing wave breaking.

From a practical point of view, we compute at each time step the
local energy dissipation D (x, t) corresponding to the first NSW step:

D x; tð Þ ¼ − ∂tE þ ∂xFð Þ; ð8Þ

with E ¼ ρ
2 hu2 þ gζ2
� �

the energy density and F ¼ ρhu u2

2 þ gζ
� �

the

energy flux density. We then detect the local maxima of the dissipa-
tion, and consider that the wave fronts are centered on these peaks.

In order to distinguish broken wave fronts from others, we quan-
tify the amount of energy dissipated at the wave front during the first
NSW step (S1). D (x, t) is integrated over the front and normalized by
h2

h1

Fig. 1. Definition sketch for a broken wave propagating over a sloping beach. lr: roller
length. lNSW=2.5lr: width of the spatial zone where the switch from S–GN to NSW
equations is performed.
the theoretical dissipation across a shock, defined as follows (Stocker,
1957):

Db ¼ ρg
4

g h2 þ h1ð Þ
2h1h2

� �1=2
h2−h1ð Þ3; ð9Þ

with h1 and h2 the water depth in front and behind the shock (see
Fig. 1). h1 and h2 are respectively approximated by the water depth
at the trough and the crest of the wave, defined as the closest surface
elevation extrema to the dissipation peak. The normalized dissipation
Γ=∫ frontD(x, t)dx/Db is close to one for fully broken waves, close to
zero when the wave is not breaking. Intermediate values can be
found at the initiation and termination of breaking, i.e. when the
breaker is not saturated ((h2−h1)bH, with H the wave height).

Thus, the study of Γ allows for a simple estimation of the wave
“state” at each time step, without requiring any wave tracking tech-
nique. We consider that for Γ≥0.5, the wave is broken, and for Γb0.5,
the wave is either non-breaking or at the very first stages of breaking.
Additional criteria are needed to determine when to initiate/terminate
wave breaking.

3.2. Breaking criteria

Several criteria for the initiation of breaking can be found in the
literature (e.g., Bjørkavåg and Kalisch, 2011; Kennedy et al., 2000;
Okamoto and Basco, 2006; Schäffer et al., 1993; Zelt, 1991). For the
test cases presented in Section 4, a criterion based on the critical
front slope (Schäffer et al., 1993) is applied, following Lynett (2006)
which identified it as the least sensitive breaking threshold. We
define Φ the maximal local front slope and Φi the critical slope, and
for Φ≥Φi the breaking process starts. For our model with improved
dispersive properties (α=1.159), we choose Φi=30°, optimal angle
determined by Cienfuegos et al. (2010) for their S–GN model.

After breaking, the wave fronts are handled as shocks by the NSW
equations. As long as they are governed by these equations, the
shocks keep dissipating energy. A physical criterion is needed to
determine when the switch back to S–GN equations has to be
performed, allowing for the breaking process to stop. The proposed
criterion is based on the analogy between a broken wave and a
bore in the sense of a simple transition between two uniform levels
(Peregrine, 1983). Bores stop breaking when their Froude number
Fr1=(cb−u1)/(gh1)1/2, with cb the bore celerity and u1 the depth-
averaged velocity in front of the bore, drops below a critical value Frc.
Our criterion for the cessation of breaking is therefore the following:
the wave stops breaking if Fr1bFrc, with Fr1 rewritten as a function of
h1 and h2 only using the mass and momentum conservation across
the bore:

Fr1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2h2=h1 þ 1ð Þ2−1

8

s
: ð10Þ

Experimental studies found that the Froude number at the cessa-
tion of breaking for a bore propagating on a flat rectangular channel
was ranging from 1.2 to 1.3 (Chanson, 2008; Favre, 1935; Treske,
1994). In the following test cases, we set Frc=1.3.

3.3. Suppression of the dispersive term

The zone over which we switch to NSW equations for a given
wave is centered on the wave front, as illustrated in Fig. 1. Its horizon-
tal length lNSW must be larger than the order of magnitude of the
physical length of the roller lr (lNSW=a lr, a>1) in order to avoid
the nonphysical effects of the dispersive terms in the vicinity of the
breaking wave front. Haller and Catalán (2010) found experimentally
that lr≈2.9 H was a good estimation of the roller length for well-
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established breakers in agreement with previous experiments by
Duncan (1981). Numerical tests showed that a≈2.5 was an appro-
priate value. Of note, the length lNSW does not determine the amount
of energy dissipated at the breaking wave front nor its spatial distri-
bution. For this reason, model predictions appear to be weakly de-
pendant from its value, as long as lNSW> lr.

The methodology to handle wave breaking is summarized in
Fig. 2. At each time step, the wave fronts are first located and their
normalized dissipation computed following the method detailed in
Section 3.1. Four cases are then possible:

• If Γb0.5 and ΦbΦi: the wave is not breaking. The flow is governed
by the S–GN equations (see Fig. 2, case 1).

• If Γb0.5 and Φ≥Φi: the wave is in the first stages of breaking. The
front is governed by NSW equations allowing the shocks to develop
(case 2).

• If Γ≥0.5 and Fr1≥Frc: the wave is broken. The wave front is locally
governed by the NSW equations (case 3).

• If Γ≥0.5 and Fr1bFrc: the wave stops breaking. The wave front is
governed by the S–GN equations (case 4).

Fig. 3 illustrates our wave-by-wave treatment of breaking using a
simulation corresponding to Cox (1995) regular wave experiments.
In the shoaling zone, the wave fronts are characterized by a normal-
ized dissipation Γ close to zero. As they propagate shoreward, the
waves gradually steepen. When their front slope reaches the critical
value Φi, the switch to NSW equations is performed. The waves
enter a transitional zone, where the fronts are steepening further
while shocks are developing (case 2). After a while, the waves are
fully broken, and their normalized dissipation is close to one (case
3). They dissipate their energy while propagating shoreward, leading
to a progressive decrease of the breaker heights and front slopes. The
waves will keep breaking as long as their Froude number is such as
0 5 10
0

0.2

0.4

0.6

0.8

x

h 
(m

)

L1

Fig. 3. Spatial snapshot of cnoidal waves propagating over a 1:35 sloping beach (Cox, 1995).
governed by NSW equations.
Fr1≥Frc, i.e. until the shoreline in this case (see vertical lines in
Fig. 3). If the broken waves were propagating over a trough (see
§4.4 for instance), the bore Froude number would decrease and even-
tually get smaller than Frc. The switch back to S–GN equations would
then be performed (case 4), resulting in the gradual disappearance of
the shocks and the decrease of the normalized dissipation Γ.

The transition between the two systems is performed abruptly, with-
out any smooth transition zone. In this way, wave propagation is gov-
erned by one given set of equations in each cell, and not by a
nonphysical mix of both sets. The transition generates some distur-
bances, but they remain of small amplitude and do not lead to instabil-
ities. No numerical filtering is applied. It is worth noting that the
generation of oscillations is also observed for Boussinesq models based
on the surface roller method when the extra terms responsible for
wave breaking are activated.

The proposed breaking model has several advantages. First, the
energy dissipation due to wave breaking is implicitly predicted by
the shock theory and does not require to be parametrized contrary
to most of the BT models. Moreover, the characterization of the
waves at each time step is performed in a simple way through the
study of the energy dissipation. The only important parameters to pre-
scribe are the criteria for the initiation and termination of breaking. It is
worth noting that the test cases presented in Section 4were all simulated
with the same set of parameters (Φi=30°, Frc=1.3). The optimization
parameter α for the dispersive properties is taken equal to 1.159.

4. Validations

In order to validate ourmodel, classical test cases are first used. They
involve the transformations of regular wave trains (Section 4.1) and
solitary waves (Section 4.2) over sloping beaches. These commonly-
used benchmarks allow for a rigorous testing of our breaking model.
More challenging test cases are then considered. The ability of our
model to describe wave breaking and swash motions over complex
bathymetries, involving the water mass separation into disjoint water
bodies is first studied (Section 4.3). We then investigate themodel abil-
ity to predict wave transformations over a bar (Section 4.4). In this test
case, a special focus is placed on the prediction of the termination
of breaking and subsequent wave transformations after the bar. Bore
dynamics for different Froude numbers is then studied (Section 4.5).
These preliminary tests aim at investigating themodel ability to account
simultaneously for the effects of dispersion, non-linearities and wave
breaking for a given wave.

4.1. Shoaling and breaking of regular waves over a sloping beach

4.1.1. Cox (1995)'s experiment
In our first test case we consider Cox (1995)'s regular waves ex-

periment. Cnoidal waves of relative amplitude H/h0=0.29 and period
15 20

 (m)

L2 L3 L4 L5 L6

L1 to L6: locations of the wave gauges. Between 2 consecutive vertical lines, the flow is
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T=2.2 s were generated in the horizontal part of a wave flume of
depth h0=0.4 m. They were then propagating and breaking over a
1:35 sloping beach. For this test case, synchronized time series of
free‐surface elevation are available at six locations, corresponding to
wave gages located outside (L1 and L2) and inside (L3 to L6) the
surf zone (see Fig. 3). During the experiment, waves were breaking
slightly shoreward to L2.

For this simulation, we choose δx=0.04 m, δt=0.01 s. Fig. 3 shows
a spatial snapshot of the free-surface profile computed with the
model. It shows that the model is able to reproduce the typical saw-
tooth profile in the Inner Surf Zone (ISZ). Fig. 4 compares the experi-
mental and numerical time series of free-surface elevation for this
experiment. We can see that we have a good overall agreement in
both the shoaling and surf zones. Themain discrepancies are observed
in the vicinity of the breaking point, where themaximumwave height
is underestimated. We can also notice that the numerical broken
wave fronts are a bit too steep: this aspect will be discussed later
in this section. It is worth noting that the time series are in phase
for most of the wave gauges, demonstrating that wave celerity is
well predicted by the model. The short time lag observed at the most
onshore location (L6) is a consequence of the slight underestimation
of the computed wave height in the inner surf zone (see also Fig. 5a,
plain lines).

In particular, the model ability to describe non-linear wave shape
is assessed through the computation of the crest-trough asymmetry
or wave skewness parameter, Sk, and the left-right asymmetry pa-
rameter, As, defined as (Kennedy et al., 2000):

Sk ¼
ζ−�ζ

 �3D E
ζ−�ζ

 �2D E3=2 ð11Þ

As ¼ −
H ζ−�ζ

 �3D E

ζ−�ζ

 �2D E3=2 ; ð12Þ

where �ζ is the wave-averaged surface elevation, 〈〉 the time-averaging
operator and H the Hilbert transform.
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Fig. 4. Comparisons of computed (solid lines) and experimental (dashed lines) syn-
chronized time series of free-surface elevation at the wave gauges for Cox (1995)
breaking experiment (δx=0.04 m and δt=0.01 s).
It is well-known that once the waves are broken and represented
as shocks, the front steepness depends on the spatial resolution δx. In
order to evaluate how the grid spacing affects the model predictions,
the numerical results obtained for two additional grid sizes are
also displayed in Fig. 5 (δx=0.02 m and 0.06 m, with δt=0.01 s
for all the computations). Fig. 5a shows that all the simulations un-
derestimate the wave height at breaking, but predict similar locations
of the breaking point, in agreement with the experimental data. It can
be observed that the maximal wave crest elevation before breaking
increases while the grid size decreases, leading to differences in the
wave height predictions in the first stages of breaking. These differ-
ences result from the larger numerical dissipation for the simulations
performed with the coarser grids, and are therefore not due to the
shock-capturing properties of our model (see also Shi et al. (2012)
for similar conclusions using their fully non-linear BT hybrid model).
We can moreover see that the agreement between data and model
is good concerning the prediction of wave set-up. As wave set-up
and broken wave energy dissipation are closely related (Bonneton,
2007), this result demonstrates that the model gives a realistic de-
scription of the energy dissipation.

Concerning the wave shape, Fig. 5b,c shows that the wave skew-
ness and asymmetry are well described before breaking for the 3
grid sizes, but that the discrepancies increase in the surf zone. The
wave skewness is still relatively well predicted after breaking, even
if a slight underestimation of this parameter is generally observed.
Larger discrepancies between experimental and numerical data can
be observed for the asymmetry in the surf zone. The model predicts
a too large increase of As in the first stages of breaking. It corresponds
to the steepening of the fronts following the switch from S–GN to
NSW equations, and therefore to the shock development. Once the
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breaker is fully-developed, the predicted asymmetry stays almost
constant, while the asymmetry computed from the experimental
data keeps increasing progressively. As expected, the value of As
increases for decreasing spatial resolution. It is important to keep in
mind that the inaccuracies observed in term of asymmetry of the
breaking wave front are not specific to our model, but result from
the description of breaking wave fronts as shocks by the NSW equa-
tions. The choice of δx is therefore crucial to obtain a good order of
magnitude for the wave asymmetry in the surf zone. As the grid
size determines the length of the numerical roller (represented as a
shock), the model abilities could probably be improved by relating
δx to the physical length of the roller, which can be seen as roughly
proportional to the characteristic water depth. The use of a variable
grid size with δx proportional to the characteristic depth could then
lead to a better prediction of the left-right asymmetry by the model.

4.1.2. Ting and Kirby (1994)'s experiment
In this section the numerical model is applied to reproduce

the laboratory experiments performed by Ting and Kirby (1994) for
spilling breakers. Cnoidal waves were generated in the horizontal
part of a flume (h0=0.4 m) and were propagating over a 1:35 sloping
beach. The wave period was T=2.0 s and the incident wave height
H=0.125 m. For this experiment, non-synchronized time series of
surface elevations and mean characteristic levels (crest, trough and
mean water levels) are available at 21 locations in the shoaling and
surf zones. For the simulation, the grid size of the mesh is δx=0.05 m
and the time step is δt=0.01 s.

Fig. 6 compares the time series of free‐surface elevations at different
locations, in the shoaling and breaking zone. The main discrepancies
are found in the vicinity of the breaking point, where the wave height
is underestimated, but the overall agreement improves significantly
while propagating shoreward.

Fig. 7a shows the spatial variations of the crest and trough eleva-
tions, as well as the variation of the mean water level for the
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Table 1
Wave heights and non-linear parameters (H/h0) for the 3 experiments carried
out by Hsiao and Lin (2010).

h0 (m) H/h0

Type 1 0.20 0.35
Type 2 0.22 0.29
Type 3 0.256 0.23
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experimental and the numerical data. It shows that wave breaking oc-
curs slightly too early in our simulation, explaining part of the wave
height underestimation at breaking. It can also be observed that our
model tends to underestimate the energy dissipation in the first
stages of breaking, leading to a too mild decrease of the wave height
in the transition zone. However, it must be noted that the wave height
decay rate is well-reproduced in the ISZ (x≳13.5 m). The discrepancies
observed in the transition zonewere expected, since the representation
of surf zone waves as shocks is a priori only accurate when the waves
resemble bore-like waves, i.e. in the ISZ. However, previous studies
using hybrid models showed that the inaccuracies observed in the
first stages of breaking were not affecting significantly the overall
predictions of the model (e.g., Tonelli and Petti, 2009, 2010). Finally,
we can see in this figure that the set-up prediction is relatively low
in most of the surf zone, but that the discrepancies get smaller when
the waves propagate shoreward. Similar underestimations of the set-
up were obtained with other BT models (see for instance Cienfuegos
et al., 2010; Lynett, 2006; Tonelli and Petti, 2010).

Fig. 7b and c presents the spatial evolution of the asymmetry and
the skewness, computed from the experimental and numerical time
series of free‐surface elevation (see Eqs. (11) and (12)). The overall
variations of the wave skewness during the onshore propagation
are well‐reproduced by the model. Sk is accurately predicted before
breaking, and reaches its maximum at the breaking point. The wave
skewness is underestimated in the surf zone, but follows a trend
similar to experimental one. Concerning the description of wave
asymmetry, the same characteristics as in Section 4.1.1 are observed.
Before breaking, a very good agreement between numerical and
experimental data is observed. The increase of the skewness at the
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initiation of breaking is then too steep, leading to significant discrep-
ancies in the surf zone. These discrepancies reduce then gradually
while the waves propagate shoreward.
4.2. Solitary wave transformation over a sloping beach (Synolakis, 1987)

In this test case, we assess the ability of our model to describe
wave breaking and shoreline motions. It is based on laboratory experi-
ments carried out by Synolakis (1987) for an incident solitary wave of
relative amplitude a0/h0=0.28 (h0=0.3 m) propagating and breaking
over a planar beach with a slope 1:19.85. For this experiment, spatial
snapshots at different times are available. The simulations are performed
using the grid size δx=0.025 m, and δt=0.008 s. Moreover, a friction
term was introduced for this simulation (friction coefficient f=0.004).

The comparisons between measured and computed waves are
presented in Fig. 8. We can see that the overall agreement is very
good during shoaling, breaking, run-up and run-down. Moreover the
model is able to describe the formation and breaking of a backwash
bore, which is a particularly demanding test for most of Boussinesq-
type models since it involves a broken bore propagating backward.
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4.3. Solitary waves overtopping a seawall (Hsiao and Lin, 2010)

We investigate here the ability of our model to describe the com-
plex transformations of solitary waves overtopping a seawall. We
consider experiments carried out by Hsiao and Lin (2010) in a 22 m
long wave flume located in the Tainan Hydraulic Laboratory, National
Cheug Kung University, Taiwan. During this experiment, three types
of solitary waves were generated. Their characteristics are described
in Table 1 (see Fig. 9 for the visualization of the water depth at rest
for the 3 cases). In the first case, the solitary wave was breaking
on the sloping beach before reaching the wall. In the second case,
the solitary wave was breaking on the seawall whereas for case 3
the wave was overtopping directly the seawall without any prior
breaking and subsequently collapsing behind the seawall. Hsiao and
Lin compared the experimental data with predictions with the
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Lin, 2010).
volume of fluid (VOF) type model COBRAS (Lin and Liu, 1998), based
on Reynolds-Averaged Navier–Stokes equations with k−ε turbulent
closure. They found a very good agreement between experimental
data and model predictions, for all stages of wave transformations.
This test case will allow us to evaluate the degree of accuracy reachable
using a depth-averaged model only.

For our simulations, we choose δt=0.007 s and δx=0.02 m. A
quadratic friction term is introduced, with a coefficient f=0.01. As
we assume the dispersive effects not to be significant shoreward of
the seawall, we decided to suppress them in this entire region. This
also prevents the potential development of numerical instabilities at
the multiple boundaries between land and water in this case.

Comparisons between the measured and numerical time series of
free-surface elevations at the wave gauges are presented in Fig. 10 for
the three types of solitary waves. A very good agreement is obtained
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for the wave gauges located seaward from the wall (see Fig. 10, wave
gauges (WG) 1–22) for all the cases. The run-up over the sloping part
of the seawall is also well‐reproduced (WG28). A part of the wave is
reflected over the wall, resulting in the development of an undulated
bore propagating seaward for the types 1 and 2. This phenomenon is
well described by the model, which highlights its good dispersive
properties. The model predictions are a bit less accurate at the wave
gauges located just behind the wall. Indeed, if the arrival time of the
overtopping wave front is well predicted by the model, its height is
generally underpredicted (see WG37–40, for 2b tb5 s). Discrepancies
are more important for Type 3. This can be explained by the highly
turbulent behaviour of the wave collapsing behind the wall, which
cannot be reproduced by our model. A better agreement is observed
at the WG46, located further away from the wall. Discrepancies
between numerical and experimental data become then more signif-
icant for t>5 s (WG37–46). It corresponds to the run-down of the
overtopped water, followed by a new run-up phase after reflection
on the seawall.

On the whole, our model gives similar results to those predicted
by the more advanced COBRAS model presented in Hsiao and Lin
(2010) in terms of time-evolution of the free surface during the first
stages of wave overtopping (shoreward propagation). Discrepancies
between numerical and experimental data increase during the run-
down/run-up phases: these parts of wave evolution are significantly
better predicted by the COBRAS model. However, it is important
to note that the predicted water depths behind the wall tend to be
similar to the experimental ones at the end of the measurements,
suggesting a good prediction of the amount of overtopped water.

4.4. Periodic waves breaking over a bar (Beji and Battjes, 1993)

Wave transformations over a bar involve a number of complex pro-
cesses such as non-linear shoaling, amplification of bound harmonics,
and eventually initiation and termination of breaking, with the release
of the higher harmonics. A good prediction of these transformations is
therefore a challenging test case for the numerical models. In Chazel
et al. (2010), our model was successfully applied to the description of
non-breaking wave propagation over a submerged bar, allowing for a
precise evaluation of its dispersive properties. In the present test case,
wave breaking occurs on the top of the bar. We aim at investigating
the ability of ourmodel to predictwave‐breaking initiation, termination
and subsequent transformations after passing the bar.

Beji and Battjes (1993) conducted a series of flume experiments
concerning the propagation of regular waves (1 Hz and 0.4 Hz) over
a submerged trapezoidal bar, corresponding to either non-breaking,
spilling breaking or plunging breaking waves. The bathymetry is
presented in Fig. 11: the water depth varies from h0=0.4 m in the
deeper region to 0.1 m over the top of the bar. In this section, we
focus on the long wave plunging case (f=0.4 Hz) as described in Beji
and Battjes (1993). Eight wave gauges were deployed, numbered
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Fig. 11. Schematic view of the experimental set‐up in Beji and Battjes (1993). Vertical
lines: location of the wave gauges (WG).
from 1 to 8 in Fig. 11. Experimental and predicted surface elevation
time series are compared in Fig. 12. Fig. 13 presents the spatial varia-
tions of the significant wave height, computed as four times the stan-
dard deviation of the surface elevation, the wave skewness and the
wave asymmetry.

The wave shape is well-reproduced during the shoaling phase (see
Fig. 12, Wave Gauge 2), until the onset of breaking (WG3). This result
is illustrated in the Fig. 13b and c, which show a good agreement
between the experimental and numerical wave shape parameters at
11 and 12 m. A good agreement is then observed during breaking
on the top of the bar, in particular in term of wave height decay
(see Fig. 12, WG4–5 and Fig. 13a, x=12–14 m). After the bar, the
breaking stops and the wave decomposes itself into several smaller
amplitude waves, which are in phase with the experimental data
and of similar wave length (see Fig. 12, WG6–8). An underestimation
of the amplitude is observed at this stage (see also Fig. 13a, x>14 m),
which seems to indicate that the switch back to S–GN equations
happened slightly too late. However, we still have an overall good
agreement, indicating that our methodology for the termination of
breaking seems adequate, and that the switch from NSW to S–GN
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equations after the bar gives a good description of the physical pro-
cesses. It is noteworthy that, to our knowledge, our study is the first
one presenting comparisons of experimental and numerical free‐
surface elevation time series for wave gauges located after the bar
for the plunging case of the Beji and Battjes (1993)'s experiments.

Finally, we can see that our model underestimates the wave skew-
ness in the breaking zone above the bar but also after the bar (see
Fig. 13b), whereas an overall good agreement is observed concerning
the prediction of the wave asymmetry (see Fig. 13c).

4.5. Transition from undular to purely breaking bore

In shallow-water regions, dispersive effects can become signifi-
cant and affect tsunami wave transformations. Depending on the
complex balance between non-linear effects, dispersive effects and
energy dissipation due to wave breaking, tsunami wave fronts can
evolve into a large range of bore types, from purely undular to purely
breaking bore (Grue et al., 2008; Yasuda, 2010). A good prediction of
tsunami wave front transformations in shallow water is therefore
needed for a better understanding of tsunami run-up and impact on
coastal structures. However, previous numerical studies concerning
bore dynamics using depth-averaged approaches have been devoted
to either purely broken bores using NSW models (e.g., Brocchini and
Dodd, 2008), or undular bores using BT models (Soares-Frazão and
Zech, 2002; Wei et al., 1995). A model able to reproduce the different
bore shapes, as well as the transition from one type of bore to another
is required.

Experimentally, it has been showed that the Froude number Fr1
controls the bore shape as well as the transition from one kind of
bore to another (see Section 3.2). Two main transitions are observed
at Fr1=Fra and Frb (FrabFrb). Non-breaking undular bores are observed
for Fr1bFra (e.g., Fra=1.3 in Chanson (2008)). For FrabFr1bFrb an
undular bore is still developing but the front wave is broken, whereas
for Fr1>Frb, a purely breaking bore is observed (Frb=1.45–1.5 in
Chanson (2008)).

In this test case, we assess the ability of our numerical model to re-
produce bore dynamics for a large range of Froude numbers. At t=0,
we consider initial steps over a flat bottom defined by

h x;0ð Þ ¼ 1
2

h2−h1ð Þ 1−tan x==ð Þð Þ þ h1

u x;0ð Þ ¼ 1
2

u2−u1ð Þ 1−tan x==ð Þð Þ þ u1;

8><
>: ð13Þ
corresponding to Froude numbers varying from 1.10 to 1.90. h1 and h2
are the water depth in front and behind the bore, u1 and u2 are the
corresponding depth-averaged velocities.We set u1=0 (water initial-
ly at rest), h1=1 m and /=2m. For each Froude number h2 and u2 are
deduced from the mass and momentum conservation across the bore.
Fig. 14 shows the bore shapes at t=30 s for the different Froude
numbers. For Fr1b1.40, the initial step evolves into an undular jump
(see experimental validation in Tissier et al. (2011) for the undular
case). It can be observed that, in agreementwith experimental studies,
the secondary wave wavelength decreases with increasing Froude
number, while the amplitude increases. For Fr1=1.40, a wave train
is formed but the first wave is broken. Although the first wave seems
too damped in comparison with the experimental results, the overall
shape at the transition is well-reproduced (see the bore pictures
from Treske (1994) for Fr1=1.35). It is also in agreement with exper-
iments by Chanson (2008), who observed a flattening of the free-
surface elevation for intermediate Froude numbers. For higher Froude
numbers, we obtain a strongly breaking bore. It can be observed
that some disturbances occur behind the breaking fronts. Their phys-
ical relevance still needs to be explored. We observe that our S–GN
model is able to reproduce accurately the main features of different
bore types, which is a challenging test case for the numerical models.
Moreover, the Froude number for the transitions are close to the
typical values observed experimentally (see Chanson, 2008; Favre,
1935; Treske, 1994).

5. Conclusion

In this paper, a new approach to handle wave breaking within the
framework of hybrid fully non-linear BT models is presented. The
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model has been developed as an extension of the well-validated NSW
shock-capturing code SURF-WB (Marche et al., 2007), using hybrid
finite volume/finite‐difference schemes (Bonneton et al., 2011b).

The modeling strategy for wave breaking is based on the splitting
of S–GN equations between a hyperbolic part corresponding to the
NSWE and a dispersive term. When the wave is ready to break, we
switch locally to the NSWE by skipping the dispersive step, such as
broken wave fronts can be described as shocks. Energy dissipation
due to wave breaking is then predicted by the shock theory, and do
not require to be parametrized. The characterization of wave fronts
at each time step is easily performed through the study of local ener-
gy dissipation. Combined with simple criteria for the initiation and
termination of breaking, we obtain an efficient treatment of wave
breaking and broken waves propagation without any complex algo-
rithm to follow the waves. Ourmethod has been extensively validated
with laboratory data. The ability of our model to reproduce regular
wave transformation over slopping beaches has been thoroughly in-
vestigated. Application of the model to several cases of overtopping
over a seawall and to a case of wave propagation over a bar allowed
us to evaluate the model ability to describe wave transformation over
complex bathymetries. Finally, promising tests concerning hydraulic
bore dynamics were performed, showing that the model is able to
reproduce the transitions from undular to purely breaking bores. The
study of bore dynamics is a particularly challenging test case since it
results from the complex balance between non-linearities, dispersive
effects and energy dissipation due to wave breaking.

Work is in progress concerning the 2DH extension of the model.
The splitting method used in this model, initially presented in
Bonneton et al. (2011b), can be easily extended to 2DH. Its imple-
mentation is in progress. The new 2DH S–GN code could be a power-
ful tool to study the generation of wave-induced circulations and
macro-vortices, which are mainly controlled by alongshore variations
in breaking wave energy dissipation (Bonneton et al., 2010; Peregrine,
1998).
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