Holocene glacier and deep water dynamics, Adélie Land region, East Antarctica

Delphine Denis⁠¹,†, Xavier Crosta⁠¹, Sabine Schmidt⁠¹, Damien Carson⁠², Raja S. Ganeshram⁠², Hans Renssen⁢, Viviane Bout-Roumazeilles⁢, Sebastien Zaragosi⁠¹, Bernard Martin⁠¹, Michel Cremer⁠¹, Jacques Giraudeau⁠¹

¹EPOC, UMR 5805 CNRS, Université Bordeaux 1, Avenue des Facultés, F-33405 Talence Cedex, France
²School of GeoSciences, The University of Edinburgh, Grant Institute, West Mains Road, Edinburgh EH9 3JW, UK
³Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, NL-1081 HV Amsterdam, The Netherlands
⁴FRE 2255 Sédimentologie & Géodynamique, Universités des Sciences et Technologies de Lille 1, F-59655 Villeneuve d’Ascq, France

ARTICLE INFO

Article history:
Received 21 March 2008
Received in revised form 30 December 2008
Accepted 30 December 2008
Available online xxx

ABSTRACT

This study presents a high-resolution multi-proxy investigation of sediment core MD03-2601 and documents major glacier oscillations and deep water activity during the Holocene in the Adélie Land region, East Antarctica. A comparison with surface ocean conditions reveals synchronous changes of glaciers, sea ice and deep water formation at Milankovitch and sub-Milankovitch time scales. We report (1) a deglaciation of the Adélie Land continental shelf from 11 to 8.5 cal ka BP, which occurred in two phases of effective glacier grounding-line retreat at 10.6 and 9 cal ka BP, associated with active deep water formation; (2) a rapid glacier and sea ice readvance centred around 7.7 cal ka BP; and (3) five rapid expansions of the glacier–sea ice systems, during the Mid to Late Holocene, associated to a long-term increase of deep water formation. At Milankovitch time scales, we show that the precessional component of insolation at high and low latitudes explains the major trend of the glacier–sea ice–ocean system throughout the Holocene, in the Adélie Land region. In addition, the orbitally-forced seasonality seems to control the coastal deep water formation via the sea ice–ocean coupling, which could lead to opposite patterns between north and south high latitudes during the Mid to Late Holocene. At sub-Milankovitch time scales, there are eight events of glacier–sea ice retreat and expansion that occurred during atmospheric cooling events over East Antarctica. Comparisons of our results with other peri-Antarctic records and model simulations from high southern latitudes may suggest that our interpretation on glacier–sea ice–ocean interactions and their Holocene evolutions reflect a more global Antarctic Holocene pattern.

1. Introduction

The East Antarctic Ice Sheet (EAIS) stores 79% of the global ice volume (Wagner and Melles, 2007), and thus directly influences both Antarctic and global climate, due to its influence on the albedo of the Southern Hemisphere, thermohaline circulation, and atmospheric circulation (Ingolfsson and Hjort, 1999). A better understanding of the impact of glacier systems and the associated climate feedbacks, particularly through the sea ice cycle and the magnitude of deep water formation (Joughin and Padman, 2003) is important for future climate predictions (DeConto et al., 2007). Glaciers appear to react rapidly to Holocene climatic changes as demonstrated by several glacier advances and retreats documented around Antarctica (Ingolfsson et al., 1998 and references therein) and around the world (Solomina et al., 2008, and references therein). However, these reconstructed glacier movements appear erratic in time and space around Antarctica and lack significant correlation with major changes during the Holocene (Wagner and Melles, 2007) as documented from ice cores (Masson et al., 2000; Masson-Delmotte et al., 2004), continental archives (Ingolfsson et al., 1998), marine sediment cores (Hodell et al., 2001; Nielsen et al., 2004) and model simulations (Renssen et al., 2005a). It is expected that ice sheets, bedrock topography, atmosphere, ocean circulation and sea ice factors determine the timing, the dynamic and the amplitude of glacier fluctuations. There is, however, no clear evidence of the implicated forcing factors and subsequent impacts of glacier movement on other climatic components such as

0277-3791/$ – see front matter © 2009 Elsevier Ltd. All rights reserved.
sea ice and deep water formation. Laminated sediments from Antarctic inner shelf basins, allow sub-seasonal to millennial reconstructions of the Holocene that may improve our understanding of climatic changes that occurred on decadal time scales. The Dumont d’Urville Trough in the Adélie Land region of the East Antarctica Margin (EAM) has received little attention despite evidence of high sediment accumulation rates (Leventer et al., 2006). Here we present a study on marine sediment core MD03-2601, retrieved from the Dumont d’Urville Trough, located in the Adélie Land margin that contains 40 m of Holocene laminated diatom ooze. Previous data obtained from the same sedimentary archive have shown that in this region, the Holocene can be divided into two different climatic periods: a warm Hypsithermal, intermediate to the Holocene maximum, and a colder Neoglacial (Crosta et al., 2007). Based on a multi-proxy approach, this study aims to better understand the interaction of the different climatic sub-systems during the Holocene, with particular focus on episodes of glacier advance and retreat that occurred throughout these different climatic regimes. Holocene movements of glaciers are investigated in parallel to deep water production, and compared with surface ocean conditions (Crosta et al., 2008), modelled sea ice cover, air temperatures and precipitations (Renssen et al., 2005a, this study), and East Antarctic climate (Masson et al., 2000).

2. Adélie Land margin setting

The Dumont d’Urville Trough (DDUT) is located off Adélie Land on the EAM and is oriented SE–NW (Fig. 1A). It is composed of a succession of glacial depressions enclosed between the Dibble Bank to the west, and the Adélie Bank to the East. The Adélie Land region is dissected by several glaciers injecting freshwater and terrigenous particles in the coastal area. The majority of freshwater and terrigenous material comes from the Zélée, Astrolabe and Français glaciers, located 200, 120 and 55 km from the core site respectively (Fig. 1A). The DDUT shows evidences of streamlined elongated ridges, known as mega-scale glacial lineations (Shipp et al., 1999; McMullen et al., 2006) that testify to past ice streaming (Fig. 1B). Two different ice stream directions are apparent, one perpendicular to the coastal line and in front of the Français glacier, and the other parallel to the coastal line, which probably originates from the Zélée glacier (Fig. 1B).

At present, the coastal area off Adélie Land is exposed to strong katabatic winds (Periard and Pettre, 1993) that support the DDU polynya throughout the winter season (Adolfs and Wendler, 1995; Arrigo and van Dijken, 2003) (Fig. 1A), located southward at 66.11°S, 139.31°E. Considered as ice factories, polynyas partly control the sea ice production. At the present time, sea ice covers the core site for 7–9 months of the year from February/March to November/December (Arrigo and van Dijken, 2003). As katabatic winds are directly induced by topography, we assume that the DDU polynya has been a persistent phenomenon throughout the Holocene period.

The DDUT is influenced by several water masses (Rintoul, 1998; Bindoff et al., 2000a,b; Williams and Bindoff, 2003): (1) the wind-driven East Wind Drift (EWD) also called Antarctic Coastal Current (ACC), which flows westward at the surface; (2) the Antarctic Surface water (AASW) constituting the near-surface layer on the continental shelf that joins up westward the EWD; (3) the Modified Circumpolar Deep Water (MCDW), which upwells at the Antarctic Divergence; and (4) the High Salinity Shelf Water (HSSW), formed by brine-rejection during winter sea ice formation and cooling of the MCDW, which flows northward as part of the Adélie Land Bottom Water (ALBW) (Fig. 1A). ALBW is characterised by cold, relatively fresh waters with high O2 content that can rest for several years in the depressions of the continental shelf (Rintoul and Bullister, 1999). A CTD profile obtained on the MD03-2601 core site displays the same characteristic as the ALBW (θ: −1.465 °C, S: 34.511 at 721 m water depth). On Adélie Land, significant cross-shelf transport of ALBW is recorded at about 135°E (Beckmann and Pereira, 2003). Westward flow of ALBW indicates that bottom water formation occurs east of 135°E and may originate from Commonwealth Bay and Mertz Glacier Tongue, where large perennial and recurrent polynyas occur (Cavalieri and Martin, 1985; Massom et al., 1998; Rintoul, 1998; Williams and Bindoff, 2003; Arrigo and...
The Marginal Ice Zone is believed to be macro-and micro-nutrient rich, and ice melting produces a stratified stable environment favourable for diatom blooms (Leventer, 1992).

3. Material and methods

Piston core MD03-2601 (66°03.07’S; 138°33.43’E; 746 m water depth) was recovered from the slope of one of the depressions composing the DDUT in 2003, during MD130 Images X cruise (CADO—Coring Adélie Diatom Oozes) on board R.V. Marion Dufresne II (Fig. 1A). The 40 m-long sediment core is composed of diatom ooze alternating with structureless greenish ooze and millimetre to centimetre thick green-to–dark seasonal laminations (Denis et al., 2006). Sediment lithology is very fine from clay to silt fraction. The sediment texture is cottony due to the high abundance of diatom frustules. Bioturbation marks are very scarce throughout the core.

3.1. Age model

Ten radiocarbon dates were performed on MD03-2601 at the Leibniz Laboratory, Kiel, Germany. Nine 14C were completed on the humic fraction of bulk organic matter and one 14C was completed on calcite shells and fragments (Crosta et al., 2007). The radiocarbon dates used to construct the age model are the same dates used in Crosta et al. (2007, 2008), e.g. the humic acid dates, with the exception of both 998 and 1498 cm dates, which are incoherent with the meteoritic impact signal, recorded elsewhere at 4 cal ka BP (Courté et al., 2007). Nevertheless, the MD03-2601 age model constructed in this study is different from these previous studies (Fig. 2, Table 1). We calibrated raw 14C dates to calendar ages using Calib 5.0 (Stuiver et al., 2005) and the marine calibration curve Marine04 (Hughen et al., 2004) with a reservoir age of 1300 years as advised for this region (Ingolfsson et al., 1998) (Table 1). Furthermore, we used a linear interpolation between control points, instead of linear regression (Crosta et al., 2007) to conserve changes of sedimentation rates that is necessary to calculate the points, instead of linear regression (Crosta et al., 2007) to conserve changes of sedimentation rates that is necessary to calculate the 230Th (Fig. 2, see Section 3.2.1). It is worth noting that the date based on the calcite shells and fragments of the crinoid pieces presents an age only 400 years younger than surrounding humic dates. This difference highlights the maximum age error within humic acid dates of the age model. MD03-2601 therefore spans the last 11 cal ka BP, with an average sedimentation rate of 0.4 cm yr⁻¹. The first millennium was lost during coring (Fig. 2).

3.2. Rationale for proxy selection

Margin sites of high sediment accumulation are often zones of preferential deposition of redistributed sediment, especially when bottom water circulation is intense (Hall and McCave, 2000; Francois et al., 2004). We used two proxies (230Thexcess, sortable silt) in order to better constrain the sediment redistribution and the bottom water circulation.

3.2.1. 230Thexcess

The 230Th excess method estimates the contribution of the lateral sedimentary inputs, named the focusing factor (Francois et al., 2004, and references therein). The 230Th geochemical behaviour permits to calculate an expected flux of scavenged 230Th, which is function of the thickness of the water column and of the radioactive decay time. Indeed, the production rate of 230Th in sea water is constant because it results from the disintegration of 234U, which is nearly constant in the ocean because of its long residence time (Chen et al., 1986). Furthermore, and contrary to its radioactive parent, 230Th presents a strong affinity with the particulate phase and is therefore rapidly scavenged and deposited on the sea floor.

Figure 2. MD03-2601 age model (black line). 14C dates from humic acid are represented by black point. Two points appear out of the age model possibly because of old carbon input (dashed circles). The grey star represents the depth at which the 4000 yr BP meteoritic impact was evidenced (Courté et al., 2007). 13C date from calcite shells and fragments is symbolised by a grey square. Dating uncertainties at 1σ level are within the symbol points.

Table 1

<table>
<thead>
<tr>
<th>Depth (cm)</th>
<th>Material</th>
<th>Raw ages 14C yr BP</th>
<th>Raw ages cal yr BP</th>
<th>Calibrated age for this study cm yr⁻¹</th>
<th>SR Calibrated age from Crosta et al. (2007) cm yr⁻¹</th>
<th>Δ Age yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Humic</td>
<td>2530</td>
<td>1002</td>
<td>0.52</td>
<td>916</td>
<td>86</td>
</tr>
<tr>
<td>498</td>
<td>Humic</td>
<td>3235</td>
<td>1951</td>
<td>0.39</td>
<td>1871</td>
<td>80</td>
</tr>
<tr>
<td>998</td>
<td>Humic</td>
<td>5175</td>
<td>4388</td>
<td>0.39</td>
<td>4314</td>
<td>74</td>
</tr>
<tr>
<td>1440</td>
<td>Meteorite</td>
<td>4000</td>
<td>4000</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>1486</td>
<td>Humic</td>
<td>6135</td>
<td>5598</td>
<td>0.39</td>
<td>5496</td>
<td>102</td>
</tr>
<tr>
<td>1998</td>
<td>Humic</td>
<td>6310</td>
<td>5782</td>
<td>0.39</td>
<td>5703</td>
<td>78</td>
</tr>
<tr>
<td>2498</td>
<td>Humic</td>
<td>7450</td>
<td>7069</td>
<td>0.39</td>
<td>6984</td>
<td>85</td>
</tr>
<tr>
<td>2998</td>
<td>Humic</td>
<td>8775</td>
<td>8344</td>
<td>0.50</td>
<td>8369</td>
<td>25</td>
</tr>
<tr>
<td>3498</td>
<td>Humic</td>
<td>9570</td>
<td>9348</td>
<td>0.32</td>
<td>9208</td>
<td>140</td>
</tr>
<tr>
<td>3661</td>
<td>Carbonate</td>
<td>9730</td>
<td>9491</td>
<td>0.32</td>
<td>9384</td>
<td>107</td>
</tr>
<tr>
<td>3998</td>
<td>Humic</td>
<td>10855</td>
<td>10923</td>
<td>0.32</td>
<td>10742</td>
<td>181</td>
</tr>
</tbody>
</table>

Raw dates were calibrated using Calib 5.0 after removing a reservoir age of 1300 years (Ingolfsson et al., 1998). The rows in boldface show the dates that were discarded (see text). The sedimentation rates used for 230Th calculation are based on the calibrated ages used in the model. Δ ages between Crosta et al. (2007) that used Bard’s polynome (Bard et al., 1998) and this study that used Calib 5.0 (Stuiver et al., 2005) are reported. The maximum age difference between the two age models is less than 200 years.
The 230Th measured in the sediment is corrected for lithogenic and authigenic contributions (See Veeh et al., 2000, for details) and for radioactive in-growth, in order to calculate the amount of 230Th originated from scavenging in the water column, referred to as being “in excess” ($^{230}\text{Th}_{\text{ex}}$). These corrections are based on the estimation of detrital uranium ($^{230}\text{U}_{\text{det}}$), which permits constraint of lithogenic and authigenic contributions. To estimate the $^{230}\text{U}_{\text{det}}$, we used the 232Th concentrations, which have uniquely a detrital origin (Brewer et al., 1980), by multiplying them with the ratio $^{234}\text{U}/^{238}\text{Th}_{\text{det}} = 0.58$, estimated for the Indian Southern Ocean (Déziel et al., 2000). This ratio is within the range of ratios measured for other sectors of the Southern Ocean (Francois et al., 1993; Frank, 1996). Authigenic uranium was calculated as the difference between total detrital uranium, correcting for in-situ growth of 230Th.

Focusing factor (ψ) values are calculated by comparing down-core excess 230Th ($^{230}\text{Th}_{\text{ex}}$) to the expected flux of 230Th from the overlying water column (Francois et al., 2004):

$$\psi = \frac{\int_0^h \Delta^{230}\text{Th}_{\text{ex}}(z) \, dz}{\rho h [\bar{F} - \bar{t}]}$$

where $^{230}\text{Th}_{\text{ex}}$ is the age-corrected excess 230Th in the sediment in dpm kg$^{-1}$, ρ is the Dry Bulk Density (DBD) in g cm$^{-3}$, dz is the interval depth in cm, β is the rate of 230Th production from 234U ($\beta = 2.63 \times 10^{-5}$ dpm cm$^{-3}$ ka$^{-1}$), h is the water depth, and t is the age in ka. ψ greater than 1 indicates focusing. This approach on active hydrodynamic shallow shelves close to sea ice system is not as straightforward as for open marine sites (Francois et al., 2004). Nevertheless, as shown later on, the comparison of $^{230}\text{Th}_{\text{ex}}$ with other indicators obtained from core MD03-2601, supports the use of ψ as a qualitative proxy of changes in lateral sedimentary input to the core site during the Holocene.

3.2.2. Sortable silt

The mean grain size of the non-cohesive 10–63 μm fraction, sortable silt (SS) has been used as a palaeo-flow intensity proxy (McCave and Hall, 2006). Laboratory analyses with a Malvern grain size auto-analyser, performed on the raw sediment, measured the size of the diatoms rather than the terrigenous particles. The opal fraction reaches 35–70% of the total sediment (Crosta et al., 2005) and entire or broken diatoms frustules strongly impact on the grain size value. Similar analyses on NaOH-treated material, though producing a better measure of the size of the terrigenous particles, still show contamination by broken diatoms and possibly loss of terrigenous particles. Therefore, we attempted to determine SS from lithic grain microscopic measurements directly on sediment indurated slides. Lithic grain counts, discernible under polarised light, have already been tested on permanent sediment slides and positively compared to titanium content (Denis et al., 2006). The lithic grain obtained by this method does not allow access to the complete granulometric fraction because of the 5 μm microscopic threshold, but this problem is also encountered using a Coulter Counter or Malvern grain size auto-analyser (McCave and Hall, 2006). Two further limiting factors are apparent when comparing with the more classical methodologies. Firstly, the number of grains analysed is lower, the error bars associated with the calculation of SS due to the low numbers of grain counted are shown in Fig. 3. Secondly, the results arise from surface and not volume measurements that can induce two biases. First of all, flat grains occupy the same surface but a reduced volume in comparison to spherical grain, though the two types of grains have a different relationship with current velocity. Most of the grains preserved in core MD03-2601, and counted under the microscope, are quartz grains and thus are always rounded. We therefore believe that our measurements are relatively unbiased due to shape orientation. Additionally, given the unit change (factor ~100) between surface and volume measurements, surface results underestimate the importance of coarser grains versus finer grains on log-normal distribution. This bias induces a lesser differentiation of SS between samples. Thereby, the SS Holocene trends based on surface measurement should be even more obvious with volume measurement. Despite these limitations, we believe that the mean sortable silt values we produced are valid to identify variations in the bottom current flow over the core site throughout the Holocene. Finally, in the DDUT region, SS can be also influenced by ice rafted transport (Hass, 2002). To consider this point, we have looked the distribution type in the total grain population and have calculated the sorting (σ) and the skewness (Sk) degrees that inform on the dispersion and the symmetry of the total grain population, respectively, and thus identify if there were significant contribution of IRD supply throughout the Holocene.

3.3. Laboratory procedures

The distribution of laminations along the entire core is based on X-ray imagery (Denis et al. 2006). Aluminium (Al) contents were measured every 32 cm (~80 years resolution) by XRF analysis. Full XRF methodology is described in Fitton et al. (1998).

The activity of U series radionuclide was determined at 60 depth horizons (Appendix A). Samples of 1–2 g dried sediment were spiked with yield monitors (218U, 228Th) before digestion in mixtures of HCl, HNO$_3$, HClO$_4$ and HF. DBD was measured by determining the dry weight of a known volume of wet sediment with a mean precision of 0.05 g cm$^{-3}$ (Appendix A). The radionuclides of interest were purified by ion exchange on anionic resins (Anderson and Fleer, 1982; Sicre et al., 2005). 238U, 234U, 232Th and 238Th activities were determined at 60 years resolution) by XRF analysis. Full XRF methodology is described in Schmidt (2006).

Results of grain-size analysis have been obtained by digital analysis of lithic grains, from 101 permanent sediment slides with a mean 40 cm sampling step, corresponding to ~100 years resolution (Appendix A). Polypropylene cubes (8 cm3) were sampled from core section without disturbing the in situ repartition of the sediment. These sediment samples were thereafter hardened following the method described in Zaragosi et al. (2006). Image acquisition was performed manually using an imagery system composed of a Leica DM600B digital microscope and Leica Qwin 3.0 software on lithic grains larger than 5 μm. Analyses were based on 13.3 mm2 area (e.g. 25 images). The final results were statistically treated to obtain the most relevant sedimentological parameters such as mean grain-size of the 10–63 μm fraction (SS), sorting (σ), and skewness (Sk) with the geometric graphical method, modified after Folk and Ward (1957) (Blott and Pye, 2001).

The surface grain areas in each sample are distributed, according to incremental logarithmic step, in 52 and 28 size classes, for the total particles population (e.g. >5 μm) and for the 10–63 μm fraction, respectively (given that the average number of counted grains in each sample is 770 and 540 for total and 10–63 μm fraction, respectively, Appendix B). The SS confidence intervals are between 0.5 and 2.3 μm, calculated according to Diögenes et al. (2005), which corresponds to a relative accuracy from 2% to 9% on SS (Fig. 3E).

Age model, laminae counts, aluminium content, radionuclides and grain size data are available electronically from the PANGAEA Data Centre, Bremerhaven, Germany at http://doi.pangaea.de/10.1594/PANGAEA.713060, -62, -63, -66 and -71, respectively.
4. Results

Detrital proxies (Al, lithic grain and 232Th contents) show the same Holocene pattern with a general decreasing trend between 11 and 3.5 cal ka BP, interrupted by several rebounds at ~11–10.3, 9.4–8.6 and 8.1–7.3 cal ka BP, and subsequently followed by a three-phase rebound at 3.5–2.2 and 2–1.6 and 1.3–1.1 cal ka BP (Fig. 3A–C). Al and 232Th contents show also a peak at around 5.1–4.8 cal ka BP (Fig. 3A–C).

The focusing factor (ψ) presents relatively high values from 10 to 70 over the last 11 cal ka BP (Fig. 3D), ψ shows similar variations to the detrital proxy records. The highest values of ψ (≥ 30) are congruent to the abovementioned peaks in the detrital proxies with a supplementary peaks at 5.9–5.6 cal ka BP (Fig. 3D).

SS results show statistically significant variations between 19 μm and 33 μm (Fig. 3E). SS general trends display high values between 11 and 7.4 cal ka BP, followed by a low-stand plateau between 7.4 and 5 cal ka BP and then a continuous increase from 5 to 1 cal ka BP (Fig. 3E). More precisely, the first interval 11–7.4 cal ka BP shows two episodes with higher values of SS at ~10.8–10.1 and 9.3–7.4 cal ka BP. The sorting (σ) and the skewness (Sk) show low variations throughout the Holocene around 0.6 and 0, respectively, both on the total fraction (>5 μm) and on the 10–63 μm fraction, which indicates very well sorted and symmetrical grain population distributions (Blott and Pye, 2001) (Appendix B).

The total grain size population (>5 μm) in our laboratory study shows a log-normal distribution (Fig. 4). The more subtle oscillations superimposed on the log-normal distribution plots are reflections of the limited number of grains considered in this study (Fig. 4, Appendix B). The Holocene variations, recorded by SS, coincide with significant shifts in the principal grain size mode of about 25, 21 and 35 μm (Fig. 4).

Fig. 3. MD03-2601 data versus time: (A) aluminium content, (B) percentage of the sediment surface held by lithic grains, (C) 232Th, (D) focusing factor (ψ) with error bars ($p < 0.05$), (E) sortable silt (SS) with error bars ($p < 0.05$) that are within the symbol points, and (F) 4-point running average of the laminae number summed every 10 cm (note the reversed axis). Shaded areas highlight phases with high focusing and lithic inputs. The white triangles show the position of the 14C dates used to construct the age model (Table 1 and Fig. 2) and the black triangles show the position of the samples chosen for illustrating Fig. 4.

Please cite this article in press as: Denis, D., et al., Holocene glacier and deep water dynamics, Adélie Land region, East Antarctica, Quaternary Science Reviews (2009), doi:10.1016/j.quascirev.2008.12.024
The number of laminae shows an opposite pattern to sortable silt with low laminae number congruent to larger and more abundant silt fraction (Fig. 3E,F). Low laminae numbers are recorded at around 11, 10.5–9.7, 9.1–8.3, 8.1–6.7 cal ka BP, and a decreasing trend is observed from 6.5–6 cal ka BP to 1 cal ka BP (Fig. 3F).

5. Discussion

5.1. Sedimentary processes

In order to decipher the sedimentary processes associated with changes in detrital content, focusing, and grain size (Figs. 3 and 5B,C), we compare our results with diatom assemblages that document the regional surface ocean conditions (Crosta et al., 2008). Here we use the F. curta / F. kerguelensis ratio (Fc/Fk ratio), which indicates the predominance of sea ice over ice-free conditions during the growing season (Leventer, 1991, 1998; Armand et al., 2005), reconstructing changes in the spring–summer sea ice cover. Chaetoceros resting spore (CRS) relative abundance is used as a proxy of increased surface water stratification (Leventer, 1991; Leventer et al., 1993), tracing the levels of glacier meltwater input (Leventer et al., 2002; Bianchi and Gersonde, 2004; Leventer et al., 2006) (Fig. 5C,D).

5.1.1. Lateral sediment supply

High lateral sedimentary input has affected the core site during the Holocene (Figs. 3D and 5A). Focusing by bottom currents is common on Antarctic continental shelves where bathymetric depressions act as sediment funnels (Camerlenghi et al., 2001; McMullen et al., 2006). The sea-floor bathymetry of the DDUT thus constitutes an area of favourable sediment accumulation. However, the presence of well-preserved seasonal diatom succession in laminations (Denis et al., 2006) demonstrates a local source of sediment focusing during periods of moderate lateral inputs. Superimposed to the baseline values, shows long-term variations, marked by a decreasing trend between 11 and 3.5 cal ka BP and a three-phase rebound after 3.5 cal ka BP (Fig. 3A–C). Within this general pattern, eight periods with higher lateral sedimentary inputs are observed during the Holocene period at ~11–10.3, 9.4–8.6, 8.1–7.3, 5.9–5.6, 5.1–4.8, 3.5–2.2, 2–1.6 and 1.3–1.1 cal ka BP (Fig. 3D), referred to hereafter as events E1 to E8 (Fig. 5A). At both Milankovitch and sub-Milankovitch time scales, except during E4, the lateral input pattern is congruent to terrigenous content changes, as shown by the agreement of the record with the records of detrital proxies (Fig. 3A–D). On the Adélie Land continental shelf, southward and northward bottom transports can act simultaneously to supply terrigenous material to the inner deeper basin (Presti et al., 2003). E1 to E8 events correspond to an increase of cryophilic diatoms in comparison to open-ocean diatoms as evidenced by high Fc/Fk ratio values (Fig. 5A–C), which is not consistent with a supply from the outer shelf. Therefore, we suggest that the most predominant sediment supply at MD03-2601 during E1 to E8 and during the Holocene is from the coast via bottom water transport.

5.1.2. Bottom current

The well-sorted and symmetrical modal distribution of grain size and the small amount of grains superior to 63 μm demonstrate that the terrigenous particle transport and deposition is dependent on current-sorting rather than ice-rafted supply (Figs. 3E and 4). Variations of SS and principal mode values are thus attributed to significant changes of the bottom current competence during the Holocene. This is further confirmed by the negative correlation between the trends of sortable silt and laminae number records (Fig. 3E,F). The presence of biogenic laminae in marine cores is directly related to export productivity (Leventer et al., 2002) and to the level of bottom water oxygen (Anderson et al., 1990). The distribution of well-preserved laminae in MD03-2601 shows no similarities with productivity variations estimated from 230Th normalised biogenic fluxes (Carson et al., submitted). Therefore, we suggest that the laminae distribution in MD03-2601 is the result of...
Fig. 5. MD03-2601 data compared to other climatic records versus time: (A) focusing factor (ψ), (B) deep current proxies: SS (black line) and laminae number (4-point running average, grey line), (C) F. curta / F. kerguelensis ratio, (D) Chaetoceros resting spores (CRS) abundances, (E) glacier climatic index from modelled winter precipitation and summer temperature for our area (black line) and for the whole Antarctica (grey line, Renssen et al., 2005a), (F) annual sea ice formation in % to the surface area from modelled summer and winter sea ice cover for the study area (black line) and for the whole southern Ocean (grey line, Renssen et al., 2005a), (G) summer insolation at 65°N and 65°S (Berger and Loutre, 1991), and (H) empirical orthogonal function (EOF) analysis performed on D/H isotopic ratio from 11 East Antarctica ice core sites (Masson et al., 2000). At the top, climatic periods defined by Crosta et al. (2007) are reported. Dark shaded areas, reported from Fig. 3, highlight major changes in the glacier–sea ice–ocean system, called E1 to E8, while the light shaded area at 4 cal ka BP shows a sea ice expansion.
changes in bottom water production, as observed in the Mertz region (Harris et al., 2001). In the Adélie Land region, changes in bottom current intensity is the result of variations in ALBW formation, initiated by HSSW formation during winter sea ice formation. We hereafter focus on the long-term pattern of the SS and laminae number records to infer ALBW Holocene dynamics (Fig. 5B). We believe the use of these proxies to interpret ALBW variations at shorter time scales is limited due to (1) calibration control on the proxies and (2) different resolution of the records.

5.1.3. Source and mode of sediment supply

During the Holocene, in particular at E1 to E8 events, variations of lateral terrigenous supply may result from sediment redistribution by bottom currents or from increased sediment load in coastal waters. There were no reworked diatoms and the overall diatom preservation is excellent (i.e. few dissolution) throughout the core (Crosta et al., 2005, 2007, 2008), which argues against sediment remobilisation or bedload transport. Additionally, variations in the focusing factor do not correspond with the changes of ALBW strength throughout the Holocene (Figs. 3 and 5). We therefore believe that both long-term variations of lateral input, in particular events E1 to E8, are the result of increased sediment load in coastal waters.

Glaciers in the Adélie Land region (e.g. Francais, Astrolabe and Zélée) have clean upper and basal layers because of the weak aeolian flux during the Holocene (Delmonte et al., 2006) and the solid bedrock (Monbeirg-Andrieu and Cailleux, 2000), and other investigations of glacier fluctuations in East Antarctica (Figs. 3 and 5). We believe the use of these proxies to interpret ALBW terrigenous charge.

5.1.4. ALBW activity

The goal of this study is to document the Holocene movements of Adélie Land glaciers and deep water formation and their links with the sea ice production at Milankovitch and sub-Milankovitch scale. We thus compare our results with records of surface ocean conditions (Crosta et al., 2008), model outputs of Holocene climate evolution for our study area, and High Southern Latitudes (Renssen et al., 2005a), mean summer insolation at 65°N and 65°S (Berger and Loutre, 1991), Antarctic continental climate (Mason et al., 2000), and other investigations of glacier fluctuations in East Antarctica (Ingólfsson et al., 1998; Roberts et al., 2004; Verkulich et al., 2002; Leverenter et al., 2006; Fig. 6).

Winter precipitation, atmospheric summer temperature, winter and summer sea ice cover are extracted from the ECBilt-CLIO-VECODE coupled atmosphere–sea ice–ocean–vegetation model experiment, forced by annually varying orbital parameters and greenhouse gas (Renssen et al., 2005a), between 64–70°S and 130–150°E for this study and South of 60°S. It is worth noting that the model output for our study region and the rest of Antarctica (Renssen et al., 2005a) can be examined over the Milankovitch time scale (Fig. 5E,F). The two most important parameters controlling ice mass-balance changes are winter precipitation and mean temperature during the ablation season (Andrews, 1975; Porter, 1975; Lie et al., 2003; Bakke et al., 2008). We have constructed a climatic index based on the normalised variations of the total winter precipitation (from April to October) minus the normalised variations of mean summer temperatures (between November and March) (Fig. 5E).

Positive variations of this glacier climatic index indicate potential favourable periods for glacier advance in the study area and in Antarctica. The annual sea ice cover built up represents the difference between modelled winter and summer sea ice cover in the study area and for the whole Southern Ocean (Fig. 5F).

Deuterium/Hydrogen isotopic records from 11 East Antarctic ice cores have been analysed using an empirical orthogonal function and these results are used as an indicator of climatic trends on the East Antarctic plateau (Masson et al., 2000). Negative values signify colder conditions and positive values signify warmer conditions (Masson et al., 2000) (Fig. 5H).

5.2.1. Milankovitch variability

5.2.1.1. Early Holocene. The decreasing pattern of glacier discharge between 11 and 8.5 cal ka BP likely reflects the terminal glacier recession at the inner part of the Adélie Land continental shelf (Fig. 5A). Larger terrigenous inputs are expected at the onset of glacier recession. Terrigenous supply subsequently decreases during glacier grounding-line retreat and stabilisation. In addition, the decrease of the glacier climatic index confirms a suitable period of glacier retreat occurred between 9 (e.g. start of model experiment) and 7 cal ka BP over Adélie Land margin and around whole Antarctic (Fig. 5E). The additional effect of lower winter precipitations and warmer summer temperature is directly induced by the precessional component of the insolation at low and high southern latitudes (Renssen et al., 2005a; Fig. 5G). The Adélie Land glacier retreat coincides with the timing of the East Antarctic Ice Sheet (EIAS) deglaciation, documented from 13 to 8 cal ka BP (Fig. 6; Goodwin, 1993; Morgan et al., 1997; Ingólfsson et al., 1998; Taylor and McMinn, 2002; Leverenter et al., 2006), which was forced by temperature warming and sea level rise (Mason et al., 2000; Masson-Delmotte et al., 2004; Leverenter et al., 2006).

The decrease of the Fc/Fk ratio and CRS abundances between 11 and 9 cal ka BP (Fig. 5C,D) suggests the seasonal sea ice cover over the continental shelf was progressively ice free during the spring and summer seasons. Southward migration of the sea ice front associated with glacier grounding-line retreat also occurred between 11 and 9 cal ka BP in the Southern Ocean Atlantic Sector (Bianchi and Gersonde, 2004). During the Early Holocene, the sea ice cycle (e.g. initiation, extent, and duration) was influenced by the combination of global warm conditions (Masson et al., 2000; Masson-Delmotte et al., 2004) and EIAS decay.

High SS values and low laminae numbers between 11 and 7.4 cal ka BP argue for an active ALBW (Fig. 5B). The onset of a seasonal sea ice formation on the continental shelf was certainly responsible for the intense ALBW activity. Indeed, the southward migration of the sea ice front associated with glacier grounding-line retreat likely induced a relocation of deep water formation sites on the continental shelf. In the same way, the total retreat of sea ice in the spring–summer season enhanced winter sea ice production on the continental shelf, which increased HSSW, and thus ALBW, formation via sea ice brine rejection (Schmittner, 2003). Our results that suggest a vigorous seasonal sea ice cycle differ from model output during the 9–7 cal ka BP period (Fig. 5B,C,F). The receding glacial conditions affecting the Antarctic climate until 7 cal ka BP are, however, not evidenced by the model that did not “account for the effect of the long-term memory for events that occurred before 9 ka” (Renssen et al., 2005a).

5.2.1.2. Mid to Late Holocene. Between 7 and 3.5 cal ka BP, reduced glacier discharge reflects a stabilisation of the Adélie Land glacier that is in agreement with the flat trend of the glacier climatic index that shows slightly negative values (Fig. 5A–E). Increased snow accumulation rates have been reported since 7 cal ka BP on coastal East Antarctica at Taylor Dome and Law Dome (Steig et al., 2000;
van Ommen et al., 2004). These elevated snow accumulation rates have been attributed to enhanced latitudinal insolation gradients since 10 cal ka BP, favouring poleward atmospheric transport (Vimeux et al., 2001) and thus enhanced precipitations over Antarctica (Rind, 2000). Increased snow fall was likely compensated by greater ice melting due to warmer summer atmospheric temperatures (Renssen et al., 2005a), thus maintaining a stable glacier mass balance.

The Fe/Fk ratio and CRS abundances show low steady values (Fig. 5 C,D), which infers an earlier sea ice waning and a longer ice-free season (Crosta et al., 2008). The reduced amount of easy-to-freeze runoffs, in comparison to deglacial conditions, may explain the lower Fe/Fk ratio values and CRS abundances and the reduced seasonal sea ice cycle though the Mid Holocene presents cooler conditions than during the Early Holocene (Masson et al., 2000; Masson-Delmotte et al., 2004).

Since 3.5 cal ka BP, glacier discharges has increased concomitantly with the glacier climatic index (Fig. 5A–E). The decrease in spring–summer surface temperature since 4–3.5 cal ka BP (Renssen et al., 2005a) has reduced the melting of winter snow and may have permitted the expansion of the glacier grounding-line during the Late Holocene. Studies on Law Dome and in the coastal margin of Adélie Land, show similar readvance of glaciers since 4 cal ka BP, forced by accumulation rate changes (Goodwin, 1998). The rapid increase of the spring–summer sea ice cover is also in line with this orbital forcing favourable to a latter sea ice waxing and a shorter ice-free season (Fig. 5C; Renssen et al., 2005a; Crosta et al., 2008).

Both laminae number and sortable silt records indicate a progressive increase of the ALBW activity between 6.5–5 and 1 cal ka BP (Fig. 5B). The ALBW pattern is remarkably similar to modelled yearly sea ice formation since 7 cal ka BP (Fig. 5F), demonstrating the importance of the seasonal sea ice cycle on the deep water formation.

5.2.1.3. Larger implications. The long-term evolution of Adélie Land glaciers during the Holocene appears forced by precessional orbital changes, evident from the sea ice sub-system (Crosta et al., 2008). The strong synchronicity of these two climatic components argues for a similar sensitivity to the forcing factors such as seasonality and spring–summer temperature. This indicates a strong interconnection via positive feedbacks such as the albedo, which can affect the amplitude of their responses to climate changes. Adélie Land glaciers show a coherent pattern with model prediction for the whole of Antarctica (Fig. 5E), with most glaciers around Antarctica (Fig. 6; Ingolfsson et al., 1998; Leventer et al., 2006; Yoon et al., 2007) and around the world (Solomina et al., 2008 and references therein). Perhaps, some strong specificity of local climate and bedrock topography can induce time lag (Goodwin, 1998).

In-situ measurements indicated that the ALBW can supply 25% of the Antarctic Bottom Water (AABW) (Gordon and Tchernia, 1972; Rintoul, 1998), in agreement with model output (Raines and Condie, 1998; Goosse et al., 2001). If the close relationship between deep water formation and sea ice formation observed off Adélie Land is valid for the whole Antarctic Ocean (Fig. 5F; Renssen et al., 2005a).

Fig. 6. Synthesis of the different glacier movements, deep current activity, sea ice conditions and climatic trends documented in the Adélie Land area by previous studies (1Ingolfsson et al., 1998; 2Roberts et al., 2004; 3Verkulich et al., 2002; 4Leventer et al., 2006; 5Harris et al., 2001; 6Presti et al., 2003; 7Kulbe et al., 2001; 8Crosta et al., 2007) and by this study, in comparison to East Antarctic climate (9Masson et al., 2000). The 14C ka BP dates reported in the publications were converted to calendar ages using Calib 5.0 for comparison with our age model.
2005a), our results suggest a long-term increase of AABW formation between 6.5–5 and 1 cal ka BP. Although no other high-resolution Antarctic marine records of deep water formation exist, studies of sediment facies (Harris et al., 2001; Presti et al., 2003) and of grain size sorting (Yoon et al., 2007) similarly suggest enhanced bottom water formation during Early and Late Holocene in the Mertz area (Fig. 6) and the northern Antarctic Peninsula, respectively. Accordingly, δ13C records measured on benthic foraminifera in several cores from the East Atlantic showed enhanced AABW flow since 7.5 cal ka BP, which was concomitant to a Mid-Holocene reduction of the North Atlantic Deep Water (NADW) ventilation (Sarnthein et al., 1994). Indeed, in the Northern Hemisphere, NADW contribution shows intensification between 10 and 6.5 cal ka BP, followed by a decreasing trend (Oppo et al., 2003). A slowing down of the northern end-member of the thermohaline circulation is also suggested since 7 cal ka BP, based on proxies related to surface and bottom waters (Dlupessy et al., 2001; Rasmussen et al., 2002; Hall et al., 2004; Solignac et al., 2004), and during the Mid Holocene, based on model experiment (Ganopolski et al., 1998). To summarise, these results may suggest that: (1) a similar behaviour of deep water formation in both hemispheres occurs during the Early Holocene as a result of the onset of post-glacial eustasy and, thus, re-initiation of deep water formation, and (2) an opposite behaviour of deep water formation since the Mid Holocene as a result of opposite precessional insolation trends that lead to increase seasonality in the Southern Hemisphere (Renssen et al., 2005a), and to decrease seasonality in the Northern Hemisphere (Renssen et al., 2005b; Naughton et al., 2007) (Fig. 5H).

5.2.2. Sub-Milankovitch variability

At the sub-orbital time scale, the glaciers, and sea ice climatic sub-systems demonstrate millennial oscillations that are well expressed during E1 to E8. These occurred within different climatic regimes: the warm Hypsithermal, the cool period and the colder Neoglacial (Fig. 5; Crosta et al., 2007). Interpretations are within the uncertainties of the age model.

5.2.2.1. Hypsithermal 1 (11–8.5 cal ka BP).

During the deglaciation, we observe two events of high terrigenous input E1 and E2 dated at 11–10.3 cal ka BP and 9.4–8.6 cal ka BP (Fig. 5A). High CRS abundances occur at the beginning of E1 and before E2 until 9 cal ka BP (Fig. 5D). The focusing and CRS records would suggest there was increased surface water stratification during enhanced glacier meltwater input. High values of the Fc/Fk ratio also occurred until 9 cal ka BP, indicating persistent spring–summer sea ice cover during the warmer climate of the Early Holocene (Masson et al., 2000; Masson-Delmotte et al., 2004) (Fig. 5C). We suggest that glacier meltwaters decreased the surface salinity, which promoted sea ice freezing that persisted during diatom growing seasons. As negative feedback, sea ice formation isolated the atmosphere from the warmer ocean surface and increased the albedo, thus resulting in an additional cooling.

The CRS record also indicates that ice-melting pre-dated the effective glacier grounding-line recession off Adélie Land evidenced by E1 and E2 (Fig. 5A). Initiation of the ice melting (Fig. 5D) is in phase with warming phases recorded in East Antarctica (Fig. 5H) while E1 and E2 occurred 500 and 1000 years later respectively, during cooling phases (Masson et al., 2000) in relation to the great inertia of glacier mass-balances. The reaction time of ice sheet mass balance was calculated to be around 500 years at the ice cap margin (Goodwin, 1996, 1998). Massive freshwater discharges may have initiated or contributed to the two cooling events recorded over East Antarctica during the Early Holocene (Masson et al., 2000), in agreement with modelled climatic impacts of Antarctic freshwater runoffs (Mikolajewicz, 1998; Richardson et al., 2005; Stouffer et al., 2007).

5.2.2.2. Cool event (8.5–7 cal ka BP).

During E3 (8.1–7.3 cal ka BP), the peak in focusing and terrigenous content is associated with low values of CRS abundances (Fig. 5A–D). These results suggest that the high terrigenous input is not related to glacier recession. Conversely, E3 is synchronous to increased sea ice cover as shown by higher values of the Fc/Fk ratio between 8.6 and 7.3 cal ka BP (Fig. 5C–H). E3 is also concomitant to one of the strongest Holocene atmospheric cooling over the East Antarctic plateau (Masson et al., 2000; Fig. 5H). This cooling may have triggered a glacier advance and sea ice expansion during the deglaciation. Glacier and sea ice advance during E3 are in phase with sea ice expansion recorded between 8 and 7 cal ka BP in the Atlantic sector of the Southern Ocean (van Beek et al., 2002; Bianchi and Gersonde, 2004; Nielsen et al., 2004), and follow the multi-centennial cold event at 8.2 cal ka BP observed around the globe (Mayewski et al., 2004; Röhl and Pälike, 2005). The end of E3 is marked by a relatively abrupt decrease in terrigenous content, focusing factor and sortable silt values, which is probably related to the return of warmer conditions at the onset of the Hypsithermal 2. This shift post-dates the abrupt Early to Mid-Holocene climatic transition (EMHT) recorded between 8.3 and 7.8 cal ka BP (Stager and Mayewski, 1997; Stager et al., 2003). This cool event and the following EMTH recorded here at high southern latitudes follow the climatic changes at low and high northern latitudes, supporting the idea of a coherent Holocene global pattern (Mayewski et al., 2004).

5.2.2.3. Hypsithermal 2 (7–3.5 cal ka BP).

During the Hypsithermal 2, the ‘steady’ state of Adélie Land glaciers is interrupted by E4 and E5 at 5.9–5.6 cal ka BP and 5.1–4.8 cal ka BP (Fig. 5A). E4 is associated with higher values of the Fc/Fk ratio (Fig. 5C) and to a short peak in CRS abundances (Fig. 5D). Conversely, the terrigenous proxies show no increase during E4 (Fig. 3). On the other hand, E5 is associated to low values of the Fc/Fk ratio and CRS abundances but to greater values of Al content and 232Th (Figs. 3 and 5). Both events are lagging small atmospheric cooling periods by 200–100 years (Figs. 2 and 5H; Masson et al., 2000). It is therefore believed that the cooling events triggered short-lived glacier re-advances and sea-ice waxing, which resulted in the small influx of terrigenous particles. A third cooling event is evidenced in the diatom records at around 4 cal ka BP but is not reflected in the 210Pb, and the terrigenous proxies (Figs. 3 and 5A–D). This event may be triggered by the small atmospheric cooling centred at 4.2 cal ka BP (Fig. 5H; Masson et al., 2000). Our data indicate that this small cooling impacted the sea ice cover but had little effect on the glacier system of Adélie Land.

5.2.2.4. Neoglacial (3.5–1 cal ka BP).

Three events of high focusing, E6 at 3.5–2.2 cal ka BP, E7 at 2–1.6 cal ka BP and E8 at 1.3–1.1 cal ka BP, are found during the Neoglacial period (Fig. 5A). These three events are associated with high terrigenous input (Fig. 3) implying important glacier discharges. These events are also concomitant to the highest Holocene values of the Fc/Fk ratio (Fig. 5C) but to non-significant changes of CRS abundances except for a short-lived peak at 2.4 cal ka BP (Fig. 5D). Given these data, we propose that E6, E7 and E8, events of terrigenous discharge, represent episodes of glacier and sea ice expansion rather than retreat because they are associated with spring–summer sea ice assemblages rather than with glacier meltwater assemblages. E6 was triggered by a small temperature fall as recorded over East Antarctica (Fig. 5H; Masson et al., 2000). It is possible that the amplitude of E6 is due to the increase of the glacier climatic index since 3.8 cal ka BP (Fig. 5E) that amplified the response of the glacier system, and to the concomitant sea ice expansion that
provided a positive feedback. A similar expansion of Wilkes Land glaciers has been reported at ~3.3 14C ka BP (ca. 3.5 cal ka BP) for the Merzt and the Ninnis glaciers (Fig. 6; McMillen et al., 2006). After a stabilisation, or even a small retreat of the glacier system between 3 cal ka BP and 2 cal ka BP that coincides with the ice margin retreat identified in Windmill island (101°E) between 2.8 and 1.9 14C ka BP (ca. 2.9 cal ka BP and 1.85 cal ka BP) (Roberts et al., 2004), we observe two small glacier expansions. E7 lasted around 400 years and is triggered by an important temperature fall whereas E8 lasted 200 years and is congruent to a temperature rise (Fig. 5H; Masson et al., 2000). Additional work is necessary to understand the apparent paradox between warm atmospheric conditions, glacier advance and sea ice expansion during E8.

6. Conclusions

Major Holocene changes in lateral terrigenous inputs in the Adélie Land margin were triggered by the retreat and/or advance of the nearby glaciers. High-resolution analyses of grain size, diatom assemblages together with the quantification of well-preserved laminae in MD03-2601 provide complementary information about deep water formation and sea ice cover changes in the Adélie Land region. All records show long-term and millennial variability of the glacier–sea ice–oceanic systems into three distinct features:

- An Early Holocene period (11–8.5 cal ka BP) when glacier and sea ice retreat have favoured increased bottom water formation. At millennial time scale, two events of effective glacier recessions at 10.5 cal ka BP and 8.9 cal ka BP occurred after warming phases. Intense meltwater outflow associated with glacier recessions stratified the surface waters and enhanced the persistence of spring–summer sea ice. Increased sea ice cover provided a negative feedback on East Antarctic atmospheric temperatures by increasing albedo.

- One event of glacier advance at 7.7 cal ka BP occurred during a cooling phase (8.5–7 cal ka BP), documented in East Antarctica (Masson et al., 2000), in the Atlantic Sector of Southern Ocean (Bianchi and Gersonde, 2004) and around the world (Mayewski et al., 2004). Sea ice expansion during the cool event provided a positive feedback on East Antarctic atmospheric temperatures.

- A Mid- to Late Holocene (7–1 cal ka BP), when we observe an orbital-forced transition from a relatively ‘steady’ state of the glacier and sea ice systems to their major expansion after 3.5 cal ka BP. Increasing sea ice seasonality, by complete spring–summer retreat and active winter production, concomitantly enhanced deep water formation in DDUT due to greater brine rejection. At the millennial time scale, five glacier–sea ice advances triggered by atmospheric cooling on East Antarctica plateau occurred during the Mid- to Late Holocene.

The interconnections evident between glacier, sea ice and oceanic climatic components point out the important impact of sea ice as a link between glacier and deep water dynamics, and its complex role because of its strong sensitivity to seasonality. Future work should improve the reconstruction of centennial-to-millennial oscillations of glaciers and sea ice in the Adélie Land region during the Holocene and the understanding of these components on the ALBW signal at this time scale.

Acknowledgements

We thank Elodie Marchès and Samuel Toucanne for their help in the understanding of sedimentological processes. We are grateful to both of the anonymous reviewers for their constructive suggestions. We personally thank people from Images X (CADO) cruise and from NSF-funded NBP0101 cruise for data and suggestions concerning the Dumont d’Urville Trough. Financial support for this study was provided by TARDHOL project through the national PNECD Program (INSU-CNRS) with the logistic support of the French IPEV (Institut Paul Emile Victor), the International Marine Past Global Change Study (IMAGES) and the ACI JC ARTTE. This is an EPOC contribution No. 1721.

Appendix A. Supplemental material

Supplementary information for this manuscript can be downloaded at: doi: 10.1016/j.quascirev.2008.12.024.

References

Goodwin, I.D., 1993. Holocene deglaciation, sea-level change, and the emergence of

Frank, M., 1996. Reconstruction of late Quaternary environmental conditions

Harris, P.T., Beaman, R.J., 2003. Processes controlling the formation of the

Hall, I.R., McCave, I.N., 2000. Palaeocurrent reconstruction, sediment and thorium

Denis, D., Crosta, X., Zaragosi, S., Martin, B., Mas, V., 2006. Seasonal and

Please cite this article in press: Denis, D., et al., Holocene glacier and deep water dynamics, Adélie Land region, East Antarctica, Quaternary Science Reviews (2009), doi:10.1016/j.quascirev.2008.12.024