Late Quaternary megaturbidites of the Indus Fan: Origin and stratigraphic significance

A R T I C L E I N F O

Article history:
Received 9 January 2012
Received in revised form 27 November 2012
Accepted 28 November 2012
Available online 7 December 2012
Communicated by D.J.W. Piper

Keywords:
Indus Fan
turbidite system
Quaternary
stratigraphy
sea-level
pull-apart basin
megaturbidite

A B S T R A C T

The Indus sedimentary basin forms one of the largest “source-to-sink” systems of the Quaternary and extends over 10⁶ km² offshore. It is characterized by a complex tectonic setting marked by the Himalayan active orogenic belt in the source area, and the active strike-slip India-Arabia plate boundary (Owen Fracture Zone; OFZ) in its distal reaches. This paper focuses on a Late Quaternary channel-levee system from the Indus Fan captured by the recent opening of the 20°N pull-apart basin, located at 850 km off the present-day Indus Delta, along the OFZ. In this area the channel-mouth deposits consist of a set of up to 23 m thick megaturbidites trapped in the basin. These deposits form “ponded” lobe deposits in a tectonically-active confined basin. Age determination from radiocarbon dating and extrapolation of local deformation rates show that the older deposits observed on the seismic profiles are up to 358 ka BP old (MIS 10). The origin of these Late Quaternary deposits are investigated in the context of the Indus “source-to-sink” system and their significance is placed in a sequence stratigraphic framework. Integration of the stratigraphic architecture of the 20°N Basin megaturbidites with previous work in the area suggests that the Indus Fan evolved from a delta-fed turbidite system with several active canyons and channel–levee during the forced regressive conditions of the last falling stage of sea-level (122–25 ka BP), to a point source turbidite system during the sea-level lowstand (Last Glacial Maximum) and early transgressive stages (25–12 ka BP). This work sheds new light on the recent evolution of the Indus sedimentary system and illustrates the importance of the delta/river evolution during the fall of sea-level (e.g., incised valley formation) on the timing of sedimentary transfer and sediment distribution at the basin-scale.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Large river-fed turbidite systems of the Quaternary (e.g. the Zaire, Amazon, Mississippi, Bengal, Indus, Zambezi or Tanzania deep-sea “fans”) develop over distances exceeding 1000 km along continental slopes and abyssal plains (Kolla et al., 1980; Bouma, 1985; Droz and Mougenot, 1987; Kolla and Coumes, 1987; Savoye et al., 2000; Bourget et al., 2008). Intensive mapping of these deep-water giants during the last four decades led to the emergence of detailed architectural (e.g. Normark, 1978; Bouma et al., 1985; Piper and Normark, 2001) and stratigraphic (e.g., Posamentier et al., 1991; Posamentier and Kolla, 2003; Catuneanu et al., 2009) sedimentary models to predict their depositional patterns and their evolution through time. Large mud-rich fans are typically associated with the development of sinuous deep-water channels that extend over several hundreds of kilometers along very low-gradients (Pirmez and Flood, 1995; Peacock et al., 2000). In their distal areas, turbidite systems are associated with the transition between channel/levee systems and sand-rich channel-mouth lobes. On passive-margins, turbidite system growth is generally enhanced when rivers are directly connected to the canyon heads during periods of sea-level lowstands (Vail and Mitchum, 1977; Posamentier et al., 1991; Posamentier and Kolla, 2003; Catuneanu et al., 2009). Conversely periods of sea-level drop (falling-stage) and rise (transgressive) are thought to be dominated by mass-transport deposits and dominantly unconfined flows leading to poor turbidite system development (Posamentier and Kolla, 2003). However, recent studies show that active turbidite system growth in transgression and highstand is possible on tectonically active margins and/or along margins associated with narrow shelves (Goldfinger et al., 2003; Boyd et al., 2008; Bourget et al., 2010; Mas et al., 2010). This has been also observed on passive margins where highstand sediment supply is high enough to by-pass the continental shelves and is transferred basinward, either because of climate-induced high sediment discharges (Ducassou et al., 2009) or maintained river-canyon connection (Khripounoff et al.,...
The Indus River currently drains an area of approximately 1.106 km² in the Arabian Sea (Fig. 1), reaching 9 km thick at its thickest point. The Indus Fan archipelago (hereafter) extends over 10⁶ km² in the Arabian Sea (Reading and Richards, 1994). The Indus Fan is the fifth largest sediment load in the world. This high sediment load is due to a poorly consolidated sediment source composed of glacial and fluvially-reworked detritus eroded from a high-relief, rapidly uplifting margin fan (sensu Reading and Richards, 1994). The Indus Fan turbidite system (referred as "indus fan" hereafter) extends over 10⁶ km² in the Arabian Sea (Fig. 1), reaching 9 km thick at its thickest part (Coumes and Kolla, 1984; McHargue and Webb, 1986; Clift et al., 2001). Glacio-eustatic sea-level changes and subsequent position of the deltalic shoreline are thought to be the main factors that influenced the evolution of the Indus Fan during the Late Quaternary (Kenyon et al., 1995; von Rad and Tahir, 1997; Prins et al., 2000; Bourget et al., 2010). It forms a typical mud-rich, "passive margin fan" (sensu Reading and Richards, 1994). The Indus Fan architecture is characterized by numerous high-relief channel/levee systems and channel-mouth lobes (McHargue and Webb, 1986; Kolla and Coumes, 1987; Kenyon et al., 1995; Carmichael et al., 2009) that were fed by several canyon systems (McHargue and Webb, 1986; Kolla and Coumes, 1987). Three canyon complexes have been mapped in the shelf and upper slope areas near the Indus Delta, in an area referred as the Indus Trough (McHargue and Webb, 1986; Kolla and Coumes, 1987). Kolla and Coumes (1987) postulated that the eastern canyon system (Canyon system 3; Fig. 1) was the last active turbidity current pathway and was younger than the western canyon system (Canyon system 2; Fig. 1). However because this early work were based on seismic data and lacked stratigraphic data, the age of both canyon systems remain uncertain. The architectural evolution of the channel–levee systems of the Indus Fan is best constrained during the Late Quaternary and has been unraveled by side-scan sonar mapping and sediment core studies (Kenyon et al., 1995; von Rad and Tahir, 1997; Prins et al., 2000). Two main channel–levee complexes (Canyon system 2; Fig. 1) successively formed through avulsion processes during the last sea-level cycle (Kenyon et al., 1995; Prins et al., 2000). The avulsion from CCL B to CCL A occurred at ca. 28 ka BP (Prins et al., 2000), i.e. close to the onset of the Last Glacial Maximum (LGM). The onset of the LGM at about 25 ka BP was characterized by a sea-level dropping from ~60 m to below 120 m in less than 10 ka (Lea et al., 2002; Waelbroeck et al., 2002; Clark et al., 2009). This enhanced rapid incision of the Indus River across the continental shelf, and headward erosion of the Indus Canyon. During the following sea-level lowstand and early rise, which lasted ca. 7500 years, the Indus River sediments were directly funnelled from the fluvial system into the canyon head and promoted the active growth of the CCL A (von Rad and Tahir, 1997; Prins and Postma, 2000; Prins et al., 2000), with reduced if not absent deposition onto the shelf. At present-day, the Indus Canyon is a 185 km long and up to 1.6 km-deep main feeder canyon (Kenyon et al., 1995; von Rad and Tahir, 1997; Prins et al., 2000). The canyon deeply incises the ~100 km-wide continental shelf, with the canyon head being at 20 m water depth, less than 4 km off the present day delta-mouth (Fig. 1). Another canyon system has also been mapped by Kolla and Coumes (1987) to the south-east (Saraswati canyon; Fig. 1). This canyon system would have been fed by the paleo-Saraswati river until the Holocene (Kolla and Coumes, 1987) and could have contributed to the development of the channel–levee complex B during the Late Quaternary (Kenyon et al., 1995).

2. Regional setting

2.1. The Indus turbidite system

The Indus “source-to-sink” system forms one of the most extensive and voluminous sedimentary basin around the world. Indus Fan sedimentation started during the Middle Eocene as the result of the onset of the India-Arabia collision and accelerated since the Early Miocene when uplift of the High Himalayas occurred (Clift et al., 2001, 2002). The Indus River currently drains an area of approximately 1.106 km² in the Himalayan region, and its annual sediment discharge before damming was about 450.10⁶ T.yr⁻¹ (Milliman et al., 1984), representing the fifth largest sediment load in the world. This high sediment load is due to a poorly consolidated sediment source composed of glacial and fluvially-reworked detritus eroded from a high-relief, rapidly uplifting mountain ranges (Milliman et al., 1984; Giosan et al., 2006). Modern water discharge varies seasonally and generally peaks during the summer monsoon season reaching 30,000 m³.s⁻¹ (Wells and Coleman, 1984) when the run-off increase due to the combination of snow melt and monsoonal rains (Milliman et al., 1984; Karim and Veizer, 2002). The Indus Delta forms a large sub-aerial delta extending over 750,000 km² (Fig. 1). The continental shelf develops on an average of 100 km off the present-day delta shoreline, and the shelf-break corresponds to the 135 m isobath (Giosan et al., 2006). Offshore, the Indus turbidite system (referred as “Indus Fan” hereafter) extends over 10⁶ km² in the Arabian Sea (Fig. 1), reaching 9 km thick at its thickest part (Coumes and Kolla, 1984; McHargue and Webb, 1986; Clift et al., 2001). Glacio-eustatic sea-level changes and subsequent position of the deltalic shoreline are thought to be the main factors that influenced the evolution of the Indus Fan during the Late Quaternary (Kenyon et al., 1995; von Rad and Tahir, 1997; Prins and Postma, 2000; Prins et al., 2000; Bourget et al., 2010). It forms a typical mud-rich, "passive margin fan" (sensu Reading and Richards, 1994). The Indus Fan architecture is characterized by numerous high-relief channel/levee systems and channel-mouth lobes (McHargue and Webb, 1986; Kolla and Coumes, 1987; Kenyon et al., 1995; Carmichael et al., 2009) that were fed by several canyon systems (McHargue and Webb, 1986; Kolla and Coumes, 1987). Three canyon complexes have been mapped in the shelf and upper slope areas near the Indus Delta, in an area referred as the Indus Trough (McHargue and Webb, 1986; Kolla and Coumes, 1987). Kolla and Coumes (1987) postulated that the eastern canyon system (Canyon system 3; Fig. 1) was the last active turbidity current pathway and was younger than the western canyon system (Canyon system 2; Fig. 1). However because this early work were based on
Radiocarbon ages of this study were performed at the “Laboratoire de Mesure du Carbone 14” in Saclay (SacA) through the “ARTEMIS” radiocarbon dating project. All the ages in the following text are given in calendar age (cal ka BP). Core stratigraphy and correlation have been also based on semi-quantitative geochemical element analyses performed at a cm-scale along the cores using an Avaatech © XRF “Core Scanner”. We used the Bromine counts (associated with marine organic content (MOC) in the sediment of Arabian Sea; Ziegler et al., 2008) to correlate the cores KS11, KS12, and KS07 with the MD04-2861 (63° 54.79 E; 24° 7.99 N) stratigraphic reference (Caley et al., 2011). KS07 is located on the Owen Ridge and entirely composed of silt-mud sediments of hemipelagic origin. It therefore constitutes a good local stratigraphic reference that could be correlated to MD04-2861 (Fig. 1). Age model of the core MD04-2861 has been obtained through a combination of radiocarbon dates, biostratigraphic correlations and oxygen isotope data (see Caley et al. (2011) for more details). More information about the XRF scanning technique and its relevance in paleo-environmental reconstructions can be found in Richter et al. (2006). Volume calculations of the turbidite events M1–M8 have been obtained through seismic interpretation of horizons across the 20°N Basin and creation of isopach maps using The Kingdom Software© (SMT). However, mapping extrapolation has been limited to a maximum distance of 2 km from the seismic profiles, resulting in a spatial coverage of only 66% of the total 20°N Basin surface. Hence in order to approach a more realistic volume value, estimation of the “total volume” deposited by each event has been calculated by applying a factor 1.5 (Table 2). However, these values are over-estimated as they encompass both turbiditic and hemipelagic deposits. In order to compare the volume of 20°N Basin deposits with previous studies, we therefore applied a correction factor based on the estimation of the proportion of hemipelagic deposits in the centre of the basin. We based our estimation on the depth correlation of the age of the M5 event, located at a maximum of 28 m deep in the basin centre (turbidites + hemipelagites) and corresponding to an age-equivalent depth of 3.5 m on KS07 (hemipelagic deposits only).
The latter result suggests that hemipelagic deposits contribute to 12.5% of the total deposit thickness in the basin centre. This factor has been applied to correct the volume calculations in Table 2.

4. Results

4.1. Sedimentary architecture of the 20°N Basin

The 20°N Basin forms a 90 km long and up to 35 km wide pull-apart basin, however restricted to less than 15 km wide off the mouth of an east-west trending channel–levee system (Figs. 1, 2).

Table 1
Radiocarbon ages of cores used in this study, including source of the data if previously published.

<table>
<thead>
<tr>
<th>Core</th>
<th>Depth in core (cm)</th>
<th>Laboratory code</th>
<th>Material</th>
<th>^{14}C age (yr BP)</th>
<th>Calendar age (cal yr BP)</th>
<th>Source of data</th>
</tr>
</thead>
<tbody>
<tr>
<td>MD042861</td>
<td>70</td>
<td>SacA 19505</td>
<td>Bulk. PL form.</td>
<td>3905 +/− 30</td>
<td>3877</td>
<td>Caley et al. (2011)</td>
</tr>
<tr>
<td>MD042861</td>
<td>140</td>
<td>SacA 19506</td>
<td>Bulk. PL form.</td>
<td>6000 +/− 35</td>
<td>7416</td>
<td>Caley et al. (2011)</td>
</tr>
<tr>
<td>MD042861</td>
<td>250</td>
<td>SacA 17219</td>
<td>G. dutertrei</td>
<td>9845 +/− 45</td>
<td>10,757</td>
<td>Caley et al. (2011)</td>
</tr>
<tr>
<td>MD042861</td>
<td>250</td>
<td>SacA 17218</td>
<td>G. ruber</td>
<td>10,345 +/− 45</td>
<td>11,325</td>
<td>Caley et al. (2011)</td>
</tr>
<tr>
<td>MD042861</td>
<td>180</td>
<td>SacA 17216</td>
<td>G. ruber</td>
<td>12,170 +/− 50</td>
<td>13,635</td>
<td>Caley et al. (2011)</td>
</tr>
<tr>
<td>MD042861</td>
<td>180</td>
<td>SacA 17217</td>
<td>G. dutertrei</td>
<td>12,485 +/− 50</td>
<td>13,922</td>
<td>Caley et al. (2011)</td>
</tr>
<tr>
<td>MD042861</td>
<td>135</td>
<td>SacA 10439</td>
<td>Bulk. PL form.</td>
<td>14,160 +/− 60</td>
<td>16,806</td>
<td>Bourget et al. (2013)</td>
</tr>
<tr>
<td>MD042861</td>
<td>450</td>
<td>SacA 17220</td>
<td>Bulk. PL form.</td>
<td>17,470 +/− 70</td>
<td>20,268</td>
<td>Caley et al. (2011)</td>
</tr>
<tr>
<td>MD042861</td>
<td>480</td>
<td>SacA 22364</td>
<td>Praerorbilina</td>
<td>18,290 +/− 60</td>
<td>21,381</td>
<td>Caley et al. (2011)</td>
</tr>
<tr>
<td>MD042861</td>
<td>500</td>
<td>SacA 17221</td>
<td>Bulk. PL form.</td>
<td>19,850 +/− 70</td>
<td>23,310</td>
<td>Caley et al. (2011)</td>
</tr>
<tr>
<td>MD042861</td>
<td>640</td>
<td>SacA 17222</td>
<td>Bulk. PL form.</td>
<td>25,170 +/− 140</td>
<td>29,596</td>
<td>Caley et al. (2011)</td>
</tr>
<tr>
<td>MD042861</td>
<td>810</td>
<td>SacA 19507</td>
<td>Bulk. PL form.</td>
<td>34,170 +/− 260</td>
<td>38,711</td>
<td>Caley et al. (2011)</td>
</tr>
<tr>
<td>KS11</td>
<td>178</td>
<td>SacA 19504</td>
<td>Bulk. PL form.</td>
<td>18,140 +/− 70</td>
<td>21,245</td>
<td>This study</td>
</tr>
<tr>
<td>KS11</td>
<td>462.5</td>
<td>SacA 19499</td>
<td>Bulk. PL form.</td>
<td>23,850 +/− 90</td>
<td>28,236</td>
<td>This study</td>
</tr>
<tr>
<td>KS11</td>
<td>512.5</td>
<td>SacA 19501</td>
<td>Bulk. PL form.</td>
<td>25,970 +/− 130</td>
<td>30,409</td>
<td>This study</td>
</tr>
<tr>
<td>KS11</td>
<td>606</td>
<td>SacA 19503</td>
<td>Bulk. PL form.</td>
<td>28,480 +/− 160</td>
<td>32,271</td>
<td>This study</td>
</tr>
<tr>
<td>KS11</td>
<td>733</td>
<td>SacA 19500</td>
<td>Bulk. PL form.</td>
<td>31,430 +/− 220</td>
<td>35,330</td>
<td>This study</td>
</tr>
<tr>
<td>KS12</td>
<td>136.5</td>
<td>SacA 19502</td>
<td>Bulk. PL form.</td>
<td>21,750 +/− 100</td>
<td>25,493</td>
<td>This study</td>
</tr>
<tr>
<td>KS07</td>
<td>12</td>
<td>SacA 23237</td>
<td>Bulk. PL form.</td>
<td>2925 +/− 30</td>
<td>3713</td>
<td>This study</td>
</tr>
<tr>
<td>KS07</td>
<td>20</td>
<td>SacA 23238</td>
<td>Bulk. PL form.</td>
<td>8535 +/− 30</td>
<td>9177</td>
<td>This study</td>
</tr>
<tr>
<td>KS07</td>
<td>40</td>
<td>SacA 23239</td>
<td>Bulk. PL form.</td>
<td>12,405 +/− 40</td>
<td>13,849</td>
<td>This study</td>
</tr>
<tr>
<td>KS07</td>
<td>55</td>
<td>SacA 21240</td>
<td>Bulk. PL form.</td>
<td>13,620 +/− 50</td>
<td>16,209</td>
<td>This study</td>
</tr>
<tr>
<td>KS07</td>
<td>60</td>
<td>SacA 23240</td>
<td>Bulk. PL form.</td>
<td>14,710 +/− 50</td>
<td>17,384</td>
<td>This study</td>
</tr>
<tr>
<td>KS07</td>
<td>150</td>
<td>SacA 23241</td>
<td>Bulk. PL form.</td>
<td>20,970 +/− 80</td>
<td>24,560</td>
<td>This study</td>
</tr>
<tr>
<td>KS07</td>
<td>329</td>
<td>SacA 23242</td>
<td>Bulk. PL form.</td>
<td>34,800 +/− 290</td>
<td>39,292</td>
<td>This study</td>
</tr>
<tr>
<td>KS07</td>
<td>376</td>
<td>SacA 21241</td>
<td>Bulk. PL form.</td>
<td>35,130 +/− 300</td>
<td>39,759</td>
<td>This study</td>
</tr>
</tbody>
</table>

The basin is bounded by two major strike-slip faults (Fig. 1) trending N25°E to N30°E (Rodriguez et al., 2011). The western side of the basin is bounded by the OFZ as a steep master fault, and the structural pattern of the eastern basin boundary is more complex and consists of a single normal fault dividing into several arcuate splays (Figs. 2 and 3; Rodriguez et al., 2011). The eastern area is marked by the capture of a 1–3 km wide channel–levee system (Fig. 3). Its trajectory and sinuosity seem to be closely related to the propagation of the SW–NE trending arcuate active faults that are preserved on the bathymetry (Fig. 3). Levees relief varies between 30 and 115 m along the surveyed area and the sections marked by an increase in height correspond to the
locations where fault-induced knickpoint cause channel entrenchment. The channel course abruptly terminates into the 20°N Basin where a system of normal faults form a >120 m high knickpoint (Fig. 3) associated with an abrupt increase of slope gradient (from ~1° to ~3–5°). Lower relief sinuous channels are also observed within the study area and correspond to older, partly buried channel–levee systems (Fig. 3; Rodriguez et al., 2011). These channels are thought to be inactive since 1.32–0.95 Ma BP (Rodriguez et al., 2011). The edges of the 20°N Basin are generally sharp and despite the fact that its walls have slopes of 10–30° (particularly along its western edge), major slump scars are neither observed along the high-resolution bathymetry (Figs. 1, 3) nor on seismic profiles (Fig. 2). The basin fill is characterized by a vertical stacking of seismic units showing a dominant transparent acoustic echo-facies (Figs. 2, 4). These units considerably thicken in the centre of the basin where they reach more than 0.033 s TWT thick, i.e. up to 25 m (M10, Figs. 2, 4). The seismic units are associated with pinch-out geometry on the edges of the basin in both S–N and E–W directions (Fig. 2), where individual seismic units become considerably thinner (~70% thinner at site KS11, and about 95% twenty kilometers to the north on line SBP-2). The base of the seismic units is often characterized by higher seismic amplitudes (Figs. 2, 4). Twenty seismic units (named M1 to M20 hereafter) have been consistently recognized in the 20°N Basin (Figs. 2, 4). Below M20, sub-bottom profiler penetration decreases and interpretation is difficult. The vertical distribution of seismic units allows differentiating two thinning-upward sedimentary intervals (Figs. 2, 4). The upper ten seismic units (M1–M10) form a max. 0.132 s. TWT thick sequence in the center of the basin, i.e., about 100 m (Figs. 2, 4). Thickness of individual seismic units measured on Section 1 (Fig. 4) decreases from M10 (18.8 m thick) to M1 (1.9 m thick; Table 2). Seismic units M11 to M20 form a second thinning-upward sequence with a maximum thickness of 64 m on Section 1 (Fig. 4), and individual seismic units ranging from 31.2 m (M20) to 3.5 m thick (M11; Table 2). Although some seismic profiles suggest that this second thinning-upward sequence also includes deeper seismic units (Figs. 2, 4), these cannot be consistently mapped over the area and therefore are not considered in the following discussion. The 20°N Basin deposits are perturbed by a transverse fault system (F1) that offsets the M1–M20 seismic units in the north-western area (Fig. 4). It causes an offset of 3.5 to 16.3 m in the seismic units along the two measured sections shown in Fig. 4, the offset decreasing from the deeper seismic units (M9) to the shallower (M1; Table 2). Below M9 the fault offset cannot be calculated due to the lack of acoustic penetration in seismic profiles in the F1 fault area (Figs. 2, 4).

4.2. Sedimentary cores

Cores KS11 and KS12 were recovered on the southwestern edge of the 20°N Basin and on the left-hand levee of the channel–levee system, respectively (Fig. 1). Both cores are composed of fine-grained sediments, mostly clay to silty clay-sized particles (Fig. 5). Coarse silt layers are observed throughout the cores (D₅₀ = 11–40 μm; Figs. 5, 6). In both KS11 and KS12 they form thin (mm to dm-thick), fining-upward layers commonly associated with planar lamination, possible convolute bedding, and slightly erosional bases (Fig. 6). These coarse to fine silt layers grade up to structureless clays (D₅₀ = 4–11 μm). The upper, muddy unit is generally bioturbated and has variable planktonic foraminifer content. Thus, KS11 and KS12 deposits can be interpreted as fine-grained turbidites (“Tc” or “Td” of Bouma, 1962) capped by turbiditic muds (“Te”) and hemipelagic sediments. Combination of AMS-14C dating and XRF records enables correlations between the two cores (Fig. 5). Their Bromine (Br) record could also be correlated with cores KS07 and MD04-2861 (Fig. 1). These two cores are composed of hemipelagic sediments and are located away from any turbiditic input (Fig. 1; Caley et al., 2011). MD04-2861 is a regional stratigraphic reference providing a complete record of the paleo-environmental evolution of the Arabian Sea during the last 310 ka BP (Caley et al., 2011). Stratigraphic data show that turbidite activity in the 20°N Basin ceased after 25.4 and 21.2 ka BP at sites KS12 and KS11, respectively (Fig. 5), an age which roughly corresponds to the onset of the Last Glacial Maximum (LGM).

4.3. Nature and age of the 20°N Basin deposits

4.3.1. Seismic-core correlation

As the seismic units pinch-out toward the edges of the basin (Fig. 2), the 9 m-long core KS11 potentially recovered much of the thick sedimentary succession in the centre of the 20°N Basin. Sand
to silt turbidite bases typically produce strong contrast of impedance on sub-bottom, high-frequency seismic (Cita and Rimoldi, 1997; Rothwell et al., 2000). The key reflectors observed in the first 10 meters depth on seismic profiles at site KS11 can be correlated with the sand to silt turbidite bases observed in the core using a seismic velocity of 1515 m.s\(^{-1}\) (Fig. 6). These reflectors define the base of the thick seismic units M1 to M5 observed in the centre of the basin centre (Fig. 6). Hence M1 to M5 units form a total thickness of about 26 m in the basin centre, corresponding to less than 9 m thick at site KS11 (Fig. 6). Older deposits (M6–20) are not recovered in KS11 (Figs. 5, 6) but show an acoustic facies similar to the M1–5 events, consisting of a thin high to moderate amplitude base capped by a thick transparent
been measured.

Fig. 4. Interpreted seismic profile SBP-1 showing the architecture of M20–M1 deposits, their offset at F1 fault location, and the location of log Sections 1 and 2 where dip angles have been measured.

4.3.2. Age determination of the 20°N Basin megaturbidites

Radiocarbon dates on cores KS11 and KS12 allows determining the age of the M1 to M5 megaturbidites (Fig. 5, Table 2), ranging from 21.2 ka BP (M1) to 35.3 ka BP (M5). Below M5, ages of M6, M7 and M8 have been obtained through correlation with the core MD04-2861 age model (Fig. 5; Caley et al., 2011). The results give an age of 85 ka BP for M8 (Table 2). Older megaturbidites could not be dated using the stratigraphic age model. However their ages can be estimated by using the evolution through time of the deformation rates on the edges of the basin. The angles of dip (in degrees) of the megaturbidite beds have been measured along the log Section 1 on the seismic profile SBP-1 (Fig. 4, Table 2). Dip values are regularly decreasing from the older megaturbidite beds (M20) to the younger (M1), suggesting constant rates of tilting on the edges of the 20°N Basin (Table 2). To test this hypothesis we measured the offset value (fault throw, in metres) of the megaturbidite beds at the location of the F1 normal fault on the seismic profile SBP-1 (Fig. 4). Results (Table 2) show that the fault throw also regularly decreases from M9 (15.1 m) to M1 (4.7 m). Linear regression between the age of megaturbidites and their offset at F1 gives an R-squared value of 0.93 (Fig. 7). These observations suggest that the subsidence (and tilting of sedimentary layers) occurred at a constant rate during the Late Quaternary. Considering a constant tilting rate, and hence dip values, increasing with time, the approximate age of pre-M8 deposits can be estimated (Fig. 7). We obtained the linear regression equation of relationship between the dipping of the megaturbidite beds and their age by using the eight dated (age model-based) deposits (M1–M8; Fig. 7). The obtained R-squared value is >0.96 (Fig. 7). The regression equation is then used to calculate the age of M9 to M19 deposits (Table 2). Dip values and age could not be estimated for M2 as it is too thin on the log section to be resolved with confidence at the scale of seismic data (Fig. 4). Penetration and quality of seismic signal decrease with depth hence measurement of seismic units dip angle is less accurate below M14–M15 on Section 1 (Fig. 4). Similarly, dip measurement and therefore age determination were impossible for M20 on Section 1 (Fig. 4). Thus similar measurements have been made along a second vertical log section (Section 2; Fig. 4) on the south-western edge of the profile SBP1 (Table 2). The linear regression equation of relationship between the dip of the megaturbidite beds and their age on Section 2 has been achieved by using the eight confidently dated (age model-based) deposits (M1–M8) as well as the M9–19 ages calculated from Section 1 (Table 2). The obtained R-squared value is >0.95 (Fig. 7). The regression equation has then been used to estimate the age of M14 to M20 deposits (Table 2), and the final age of these seismic units have been calculated as a mean of individual values obtained by the interpolation on both log sections (Table 2; Fig. 7). Using this technique, age estimation indicates that the oldest visible on the seismic data (megaturbidite event M20) is dated at 357.8 ka BP (MIS 10).

Uncertainties in age estimation increase from the youngest megaturbidites (M1–M8) to the oldest (M9–M20; Table 2). Their age uncertainty is thus given by the error in radiocarbon measurement (Table 1) and is less than 260 years. Megaturbidites 6 to 8 have been dated through core-to-core correlation with the stratigraphic reference MD04-2861 (Fig. 5). Chronostratigraphy of MD04-2861 was realized through biostratigraphy and correlation with U/Th dating in the Arabian Peninsula (Caley et al., 2011). This radiocarbon data is associated with error ranges of ca. 1 ka (Caley et al., 2011 and references therein). Age of the megaturbidites M9 to M19 were estimated at log Section 1 (Fig. 4). The uncertainty in the age determination was determined by calculating the standard deviation in the calculated ages, considering than more than 95% of the calculated error is contained within twice the standard deviation (Table 2). The mean statistical variance,
Fig. 5. Core correlation and stratigraphy based on grain-size measurement (D50, D90, μm), Bromine (Br) and Ti/Ca XRF measurement, radiocarbon dating and correlation with MD04-2861 regional stratigraphic reference (Caley et al., 2011).
consisting of the mean of the squared differences between the estimated ages of M1–M8 at log Section 1 and their "core data" value, was first calculated. The standard deviation equals the root mean square of this value (Table 2). This provides an error range for the ages of M9–M19 of ca. 10 ka (Table 2). Uncertainty in the age of M20 was estimated by calculating the standard deviation at log Section 2 following the same method. Here the mean variance consists of the mean of the squared differences between the estimated ages of M1–M8 at log Section 2 and their "core data" value, and the estimated ages of M9–M19 at log Section 2 and their estimated age at log Section 1. Error range for M20 reaches 39 ka. However this value adds up to the error range associated with age estimation at log Section 1 (as these values were used to calculate the standard deviation at log Section 2), and the total error range for M20 is 49 ka (Table 2). These uncertainties in age determination are important when considering the timing of megaturbidite emplacement in the 20°N Basin and its relationship with sea-level or climate.

5. Discussion

5.1.1. Provenance of the turbidity currents

The discovery of distal megaturbidite deposits at a deep-water plate boundary raises the question of the provenance of the turbidity currents at the origin of their formation. The 20°N Basin is fed by a
channel–levee system trending east to west (Fig. 3), thus indicating a possible connection with the turbidite system of the Indus Fan to the east (Fig. 1). A local origin for the 20°N Basin deposits can be ruled out as slump scars are not observed along the pull-apart basin walls and mass-transport deposits are not observed on seismic profiles (Rodriguez et al., 2011; Figs. 1, 2, 3). Bathymetry and shallow seismic data also show that there is no sediment supply from the Oman margin to the west (Rodriguez et al., 2011; Figs. 1, 3). The bathymetry data used in this study is incomplete but does not suggest a direct linkage with the main Indus canyon upslope (Fig. 1). Instead, the feeder channel of the 20°N Basin is located approximately 200 km downstream of the channel–levee systems of the Canyon system 2 mapped by Kolla and Coumes (1987) from bathymetry and sub-bottom seismic data (Fig. 1). The age of the canyon system 2 and its channel–levee systems is uncertain but the lack of channel-plug deposits on the published seismic data of Kolla and Coumes (1987) suggests that they were active recently and presumably during the Late Quaternary. This is also suggested by the more recent seismic profiles analysed by Carmichael et al. (2009) in the same area (western Indus Fan) that revealed several recent canyons and channel/levee complexes of latest Pleistocene in age (Fig. 1). Thus, it is possible that the 20°N channel was connected to distal channels from the canyon system 2 (Fig. 1) but this remains speculative due to the limitations of the data presently available and the lack of stratigraphic control in the original data of Kolla and Coumes (1987). However the data available suggest that the megaturbidites of the 20°N Basin are distal turbidite deposits of the Indus Fan.

5.1.2. Ponded lobe deposits

The distal parts of deep-water turbidite systems are often associated with the formation of channel-mouth lobe complexes. The latter form depositional areas where sands are generally concentrated as the gravity currents have been progressively depleted in fine-grained sediments through overbank processes along the channel–levee systems. Along mud-rich, passive margin turbidite systems such as the Indus Fan,
channel-mouth lobes develop across unconfined basin plains and generally extend over very large distances, exceeding 100 km on the Amazon, Nile, Zaire or Mississippi fans (Twichell et al., 1991; Savoye et al., 2000; Jegou et al., 2008; Migeon et al., 2010). These lobes typically form highly ramified, channelized and elongated depositional environments. In the Indus Fan, deep sea lobes from the last active channel/levee complexes (CLC A and B) also developed over very large distances across the very low gradient, eastern basin plain (Kenyon et al., 1995). Conversely the last active channel–levee system in the study area abruptly terminates its course in a very confined trough, less than 13 km-wide and up to 320 m-deep at this location (Fig. 1). Individual lobe deposits in mud-rich fans are dispersed over very large distances (> 100 km) and form relatively thin (typically cm to dm-thick) deposits (Twichell et al., 1991; Bonnel, 2005; Migeon et al., 2010). However the range of thicknesses and volumes of individual lobe deposits in other mud-rich fans approaches the values obtained in the 20°N Basin. A 20 cm, 50 cm, or 1 m thick turbidite (e.g., range of lobe thickness deposits in mud-rich deep-sea lobes; Twichell et al., 1991; Bonnel, 2005; Migeon et al., 2010) deposited within a lobe area of 4800 km² (the size of the Nile deep-sea lobes off the Rosetta channel–levee complex; Migeon et al., 2010) represent a volume of 0.96, 2.4, and 4.8 km³, respectively. This is of similar if not higher order of magnitude than the values calculated for M1–M8 megaturbidites in the 20°N Basin (0.4 to 2.79 km³; Table 2), which is only 260 km² in area (Fig. 1). Thus the great thickness of each turbidite event in the 20°N Basin is more likely related to the confinement of the depositional area rather than to an exceptional volume of sediment transported by gravity currents. Therefore, the Indus megaturbidites differ from the previously described megaturbidites of the Quaternary that are usually thinner (7 m-thick deposit on average) but laterally extensive (51,000 km² on average) and are rather similar to ancient megaturbidites, generally thicker (average 40 m) but deposited in confined basins (435 km³ on average; Reeder et al., 2000; Mulder et al., 2009). Considering the volume of individual turbidite deposits in the 20°N Basin, it is unlikely that turbidity currents at their origin were formed through local mass-reworking of levee deposits from the upper Indus Fan, although it is possible that downslope erosion along the turbidity current pathway may have contributed to the final turbiditic volumes observed in the 20°N Basin. The thick, acoustically-transparent seismic facies of the 20°N Basin megaturbidites is a characteristic often observed in ponded turbidites deposits (e.g., Cita and Aloisi, 2000; Tripsanas et al., 2004; Beck et al., 2007). Thick acoustically-transparent layers correspond to ungraded, often structureless clastic muds representing fallout from a suspension cloud produced by axial ponding of the muddy tail of turbidity currents (Pickering and Hiscott, 1985; Haughton, 1994; Mulder et al., 2009). Therefore, the capture of a distal Indus turbidite channel by the 20°N pull-apart basin resulted in the formation of the very thick (individually up to 20 m), mud-rich megaturbidite beds through flow ponding in a confined trough. These form unusual deposits equivalent to distal “lobe” deposits trapped at a transform (strike-slip) plate boundary.
5.2. Late Quaternary evolution of the Indus Fan and stratigraphic significance of the 20°N Basin megaturbidites

5.2.1. Link between the 20°N megaturbidites, sea-level and climate

The comparison of the age and thickness of the best dated sequence of megaturbidites of the 20°N Basin (M1–M10) with the oxygen isotope and sea-level record of the Late Quaternary primarily shows two main trends (Figs. 8 & 9). Firstly, the deposition of the megaturbidites occurred within the context of a 4th-order (ca. 100 ka-duration) falling-stage of sea-level period (Figs. 8 & 9). In addition, the maximum bed thickness of the megaturbidites (measured in the basin centre), their bed thickness measured at log Section 1, and their estimated volume all globally decrease with their age (Figs. 8 & 9). These observations suggest that the volume of sediments brought by individual turbidity current to the 20°N Basin decreased with time as the sea-level fell (i.e., in conditions of forced regression). These trends are less pronounced for older megaturbidites (M11–M20; Fig. 8). Measurements at log Section 1 show that within megaturbidites deposited during the previous sea-level fall period (ca. 216–128 ka BP), M15 and M16 are thicker (7.5 m) than M14–M11 (0.9–3.5 m). Megaturbidites M17–M20 were formed in different 4th-order falling sea-level periods, where the low number of megaturbidites recorded precludes drawing significant conclusions (Fig. 8). Whether the 20°N Basin megaturbidites were deposited in conditions of high-frequency sea-level fall, rise or stillstand is more difficult to apprehend considering the limitations of the dataset. In particular, the error ranges associated with the age calculations for megaturbidites M9 to M19 (10 ka) and M20 (49 ka) need to be taken in account (Fig. 8). A gradient curve was calculated from the sea-level curve of Waehrebrock et al. (2002) in order to identify periods and rates of sea-level changes at high-frequency (Fig. 8). The results show that the age of 5 out of 8 (62.5%) of the best dated sequences (M1–M8) corresponds to a period of sea-level fall (Fig. 8). Similarly, eight out of eleven (72%) megaturbidites with higher uncertainty in age estimation (M9–19) correspond to periods of sea-level fall (with more than 50% of their age range coinciding with falling-stage periods; Fig. 8). In conclusion, the comparison between megaturbidite emplacement in the 20°N Basin and sea-level changes suggest that megaturbidites were formed during 4th-order sea-level fall periods, but their link with high-frequency sea-level changes is difficult to establish, maybe due to the low number of events and the errors in age estimation (Figs. 8 & 9).

The possible linkage between the timing of megaturbidite emplacement and climate-induced periods of increased sediment discharge in the Indus catchment is another interesting parameter to investigate. Indeed, monsoon-induced humid periods directly influenced the Late Quaternary evolution of basinward sediment transfer along the nearby Makran margin, resulting in more frequent, finer-grained turbidite system growth (Bourget et al., 2010). Similar monsoon-induced control on turbidite system growth was observed in the Nile turbidite system (Ducassou et al., 2009). However, the Indus River catchment includes the western part of the Himalayan orogen where glaciers develop (Benn and Owen, 1998; Owen et al., 2008). Continental record shows that the timing of glaciation within the Indus River catchment during the Late Quaternary was not synchronous with the global ice-volume maximum (Benn and Owen, 1998). Instead, regional glacier expansion coincided with the Northern Hemisphere insolation maxima and periods of enhanced summer monsoon (Benn and Owen, 1998; Owen et al., 2008). The increase in precipitation rates in the very high altitude Indus River catchment was associated with snowing and glacial advance (Owen et al., 2008). Therefore, maximum river discharge at the Indus River mouth and periods of increased turbidite system growth would coincide with melt-water pulses in deglacial periods, as is commonly observed in glacial-influenced turbidite systems of the Northern Hemisphere (e.g., Zaragozi et al., 2006). However, the comparison of the megaturbidite stratigraphy with the Indian Summer Monsoon stack of Caley et al. (2011) does not show any significant relationship between summer monsoon intensity and the 20°N Basin megaturbidites (Fig. 8). The megaturbidites do not systematically form following a peak in summer monsoon intensity (i.e., a likely melt-water pulse event) and no clear trend can be observed (Fig. 8). However this apparent lack of correlation could be the result of the error ranges in age estimation, as well as the very distal location of the 20°N Basin with regards to the Indus Delta (Fig. 1).

5.2.2. A progressive confinement of sediment supply to the basin during the last sea-level cycle?

The 20°N Basin megaturbidites have been deposited during 4th-order periods of falling sea-level (Figs. 8 & 9). The best dated sequence, which corresponds to the last ten events (M1–M10), shows a decrease in megaturbidite thickness and volumes during the last sea-level fall period of the Quaternary. This stratigraphic evolution forms two apparent paradoxes: (i) the presence of a thinning-upward deep-water sequence within a period of forced-regression and increase in source-to-sink sediment transfer (Posamentier and Kolla, 2003; Catuneanu et al., 2009), and (ii) the cessation of turbidite activity in the 20°N Basin at the onset of the LGM, whilst the Indus River directly discharged sediments into the Indus Canyon and led to maximum fan aggradation into the basin (Kenyon et al., 1995; Prins and Postma, 2000; Prins et al., 2000). To understand this phenomenon, the linkage between the 20°N Basin and the upstream part of the Indus Fan need to be investigated, and the megaturbidites need to be replaced in the context of global evolution of the Indus sedimentary system during the Late Quaternary (Fig. 9).

Recent evolution of the Indus Delta has been marked by basinward progradation with 98% of the Indus River pre-damming sediment load being deposited in delta front (86%) and prodelta (13%) cliniforms (Giosan et al., 2006). Thus Holocene sedimentation in the Indus Delta corresponds to typical conditions of stillstand normal regression (Posamentier et al., 1989; Posamentier and Kolla, 2003; Catuneanu et al., 2009). Sediments are temporarily stored along the continental shelf during this hysteresis period and deep-water sediment deposition is therefore very limited, and restricted to occasional flushing of delta-front and pro-delta sediments in the Indus Canyon (von Rad and Tahir, 1997; Prins et al., 2000). Indus Delta-basin configuration during the MIS 5 sea-level highstand was likely similar to the present day conditions. The following onset of sea-level drop at ~122 ka BP was associated with forced regression of the delta (von Rad and Tahir, 1997), where either multiple river distributaries and/or tidal reworking could have created multiple points of sediment entry in the outer shelf (Fig. 9). Indeed, von Rad and Tahir (1997) mapped numerous buried or semi-buried channels and gullies west and east of the main Indus Canyon. Their results showed that they were formed during the last ~122 ka BP, and prior to the Last Glacial Maximum lowstand, in conditions of high rates of delta front/prodelta progradation and high sediment supply. This period was also associated with widespread mass-wasting in the upper-slope area (von Rad and Tahir, 1997). High sediment supply rates were likely enhanced by both rapid progradation of the Indus Delta toward the shelf-break and remobilization of the large volumes of delta-front and pro-delta fine-grained sediments accumulated on the continental shelf during the preceding hysteresis. It is also possible that other canyon systems were active during this period (Fig. 9), including the canyon system 2 (Fig. 1) of Kolla and Coupès (1987), although this remains speculative due to the lack of age control. Basinward, both channel–levee complex B, to the east (Kenyon et al., 1995; Prins et al., 2000) and the 20°N channel–levee system, to the west (this study) were synchronously active (Fig. 9). Thus turbidity currents originated from the Indus Delta were transported through at least two different channel–levee systems to the south-east (CLC B) and west (20°N channel) prior to the Last Glacial Maximum, in addition to the multiple shelf-edge canyon and gullies mapped by von Rad and Tahir (1997). The combination of the results obtained in the present study with previously published data suggests that during the last
of the Indus sedimentary system and illustrates the importance of sea-level control on the sedimentary transfer mechanisms during forced regressive periods.

Acknowledgment

We are indebted to all the crew from the “Owen” and “FanIndien” surveys 2009 (BIFO Beaufonds-Beaufé) for their assistance in data acquisition. We thank Peter Talling, an anonymous reviewer and the editor D. J. W Piper for their insightful reviews that greatly improved the paper.

References

